numerical Reckoning Fixed Points for Berinde Mappings via a Faster iteration Process
In this work we prove that $M$-iteration process converges strongly faster than $S$-iteration and Picard-$S$ iteration processes. Moreover $M-$ iteration process is faster than $S_n$ iteration process with a sufficient condition for weak contractive mapping defined on a normed linear space. We also...
Gespeichert in:
Veröffentlicht in: | Facta universitatis. Series, mathematics and informatics mathematics and informatics, 2018-09, Vol.33 (2), p.295 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 295 |
container_title | Facta universitatis. Series, mathematics and informatics |
container_volume | 33 |
creator | Alagoz, Osman Gunduz, Birol Akbulut, Sezgin |
description | In this work we prove that $M$-iteration process converges strongly faster than $S$-iteration and Picard-$S$ iteration processes. Moreover $M-$ iteration process is faster than $S_n$ iteration process with a sufficient condition for weak contractive mapping defined on a normed linear space. We also give two numerical reckoning examples to support our main theorem. For approximating fixed points, all codes were written in MAPLE \textcircled{c}2018 All rights reserved. |
doi_str_mv | 10.22190/FUMI1802295A |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_22190_FUMI1802295A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_22190_FUMI1802295A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c167t-ff880fc43dc9f1869f2155b0e2cf9bd6f9af948bd4d70fe7f34d42adec045bdd3</originalsourceid><addsrcrecordid>eNpNkMFLwzAchYMoWOaO3vMPVJM0SZvjHFYHGw7ZwFtJk_wkuiUlqaL__Yp68B3eu3y8w4fQNSU3jFFFbtv9ZkUbwpgSizNUME5kSXj9co4KUglWKinFJZrn_EamiFpJLgq0Cx9Hl7zRB_zszHsMPrzi1n85i7fRhzFjiAnfTUiwDm_0MExAxp9eY41bnUeXsJ9Kjz4GvE3RuJyv0AXoQ3bzv52hfXu_Wz6W66eH1XKxLg2V9VgCNA0BwytrFNBGKmBUiJ44ZkD1VoLSoHjTW25rAq6GilvOtHWGcNFbW81Q-ftrUsw5OeiG5I86fXeUdD9Wuv9WqhMqWFap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>numerical Reckoning Fixed Points for Berinde Mappings via a Faster iteration Process</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alagoz, Osman ; Gunduz, Birol ; Akbulut, Sezgin</creator><creatorcontrib>Alagoz, Osman ; Gunduz, Birol ; Akbulut, Sezgin</creatorcontrib><description>In this work we prove that $M$-iteration process converges strongly faster than $S$-iteration and Picard-$S$ iteration processes. Moreover $M-$ iteration process is faster than $S_n$ iteration process with a sufficient condition for weak contractive mapping defined on a normed linear space. We also give two numerical reckoning examples to support our main theorem. For approximating fixed points, all codes were written in MAPLE \textcircled{c}2018 All rights reserved.</description><identifier>ISSN: 0352-9665</identifier><identifier>EISSN: 2406-047X</identifier><identifier>DOI: 10.22190/FUMI1802295A</identifier><language>eng</language><ispartof>Facta universitatis. Series, mathematics and informatics, 2018-09, Vol.33 (2), p.295</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c167t-ff880fc43dc9f1869f2155b0e2cf9bd6f9af948bd4d70fe7f34d42adec045bdd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alagoz, Osman</creatorcontrib><creatorcontrib>Gunduz, Birol</creatorcontrib><creatorcontrib>Akbulut, Sezgin</creatorcontrib><title>numerical Reckoning Fixed Points for Berinde Mappings via a Faster iteration Process</title><title>Facta universitatis. Series, mathematics and informatics</title><description>In this work we prove that $M$-iteration process converges strongly faster than $S$-iteration and Picard-$S$ iteration processes. Moreover $M-$ iteration process is faster than $S_n$ iteration process with a sufficient condition for weak contractive mapping defined on a normed linear space. We also give two numerical reckoning examples to support our main theorem. For approximating fixed points, all codes were written in MAPLE \textcircled{c}2018 All rights reserved.</description><issn>0352-9665</issn><issn>2406-047X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMFLwzAchYMoWOaO3vMPVJM0SZvjHFYHGw7ZwFtJk_wkuiUlqaL__Yp68B3eu3y8w4fQNSU3jFFFbtv9ZkUbwpgSizNUME5kSXj9co4KUglWKinFJZrn_EamiFpJLgq0Cx9Hl7zRB_zszHsMPrzi1n85i7fRhzFjiAnfTUiwDm_0MExAxp9eY41bnUeXsJ9Kjz4GvE3RuJyv0AXoQ3bzv52hfXu_Wz6W66eH1XKxLg2V9VgCNA0BwytrFNBGKmBUiJ44ZkD1VoLSoHjTW25rAq6GilvOtHWGcNFbW81Q-ftrUsw5OeiG5I86fXeUdD9Wuv9WqhMqWFap</recordid><startdate>20180907</startdate><enddate>20180907</enddate><creator>Alagoz, Osman</creator><creator>Gunduz, Birol</creator><creator>Akbulut, Sezgin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180907</creationdate><title>numerical Reckoning Fixed Points for Berinde Mappings via a Faster iteration Process</title><author>Alagoz, Osman ; Gunduz, Birol ; Akbulut, Sezgin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c167t-ff880fc43dc9f1869f2155b0e2cf9bd6f9af948bd4d70fe7f34d42adec045bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Alagoz, Osman</creatorcontrib><creatorcontrib>Gunduz, Birol</creatorcontrib><creatorcontrib>Akbulut, Sezgin</creatorcontrib><collection>CrossRef</collection><jtitle>Facta universitatis. Series, mathematics and informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alagoz, Osman</au><au>Gunduz, Birol</au><au>Akbulut, Sezgin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>numerical Reckoning Fixed Points for Berinde Mappings via a Faster iteration Process</atitle><jtitle>Facta universitatis. Series, mathematics and informatics</jtitle><date>2018-09-07</date><risdate>2018</risdate><volume>33</volume><issue>2</issue><spage>295</spage><pages>295-</pages><issn>0352-9665</issn><eissn>2406-047X</eissn><abstract>In this work we prove that $M$-iteration process converges strongly faster than $S$-iteration and Picard-$S$ iteration processes. Moreover $M-$ iteration process is faster than $S_n$ iteration process with a sufficient condition for weak contractive mapping defined on a normed linear space. We also give two numerical reckoning examples to support our main theorem. For approximating fixed points, all codes were written in MAPLE \textcircled{c}2018 All rights reserved.</abstract><doi>10.22190/FUMI1802295A</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0352-9665 |
ispartof | Facta universitatis. Series, mathematics and informatics, 2018-09, Vol.33 (2), p.295 |
issn | 0352-9665 2406-047X |
language | eng |
recordid | cdi_crossref_primary_10_22190_FUMI1802295A |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | numerical Reckoning Fixed Points for Berinde Mappings via a Faster iteration Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=numerical%20Reckoning%20Fixed%20Points%20for%20Berinde%20Mappings%20via%20a%20Faster%20iteration%20Process&rft.jtitle=Facta%20universitatis.%20Series,%20mathematics%20and%20informatics&rft.au=Alagoz,%20Osman&rft.date=2018-09-07&rft.volume=33&rft.issue=2&rft.spage=295&rft.pages=295-&rft.issn=0352-9665&rft.eissn=2406-047X&rft_id=info:doi/10.22190/FUMI1802295A&rft_dat=%3Ccrossref%3E10_22190_FUMI1802295A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |