numerical Reckoning Fixed Points for Berinde Mappings via a Faster iteration Process
In this work we prove that $M$-iteration process converges strongly faster than $S$-iteration and Picard-$S$ iteration processes. Moreover $M-$ iteration process is faster than $S_n$ iteration process with a sufficient condition for weak contractive mapping defined on a normed linear space. We also...
Gespeichert in:
Veröffentlicht in: | Facta universitatis. Series, mathematics and informatics mathematics and informatics, 2018-09, Vol.33 (2), p.295 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we prove that $M$-iteration process converges strongly faster than $S$-iteration and Picard-$S$ iteration processes. Moreover $M-$ iteration process is faster than $S_n$ iteration process with a sufficient condition for weak contractive mapping defined on a normed linear space. We also give two numerical reckoning examples to support our main theorem. For approximating fixed points, all codes were written in MAPLE \textcircled{c}2018 All rights reserved. |
---|---|
ISSN: | 0352-9665 2406-047X |
DOI: | 10.22190/FUMI1802295A |