A NEW INTEGRATED GREY MCDM MODEL: CASE OF WAREHOUSE LOCATION SELECTION

Warehouses link suppliers and customers throughout the entire supply chain. The location of the warehouse has a significant impact on the logistics process. Even though all other warehouse activities are successful, if the product dispatched from the warehouse fails to meet the customer needs in tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Facta Universitatis. Series: Mechanical Engineering 2021-01, Vol.19 (3), p.515
Hauptverfasser: Ulutaş, Alptekin, Balo, Figen, Sua, Lutfu, Demir, Ezgi, Topal, Ayşe, Jakovljević, Vladimir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Warehouses link suppliers and customers throughout the entire supply chain. The location of the warehouse has a significant impact on the logistics process. Even though all other warehouse activities are successful, if the product dispatched from the warehouse fails to meet the customer needs in time, the company may face with the risk of losing customers. This affects the performance of the whole supply chain therefore the choice of warehouse location is an important decision problem. This problem is a multi-criteria decision-making (MCDM) problem since it involves many criteria and alternatives in the selection process. This study proposes an integrated grey MCDM model including grey preference selection index (GPSI) and grey proximity indexed value (GPIV) to determine the most appropriate warehouse location for a supermarket. This study aims to make three contributions to the literature. PSI and PIV methods combined with grey theory will be introduced for the first time in the literature. In addition, GPSI and GPIV methods will be combined and used to select the best warehouse location. In this study, the performances of five warehouse location alternatives were assessed with twelve criteria. Location 4 is found as the best alternative in GPIV. The GPIV results were compared with other grey MCDM methods, and it was found that GPIV method is reliable. It has been determined from the sensitivity analysis that the change in criteria weights causes a change in the ranking of the locations therefore GPIV method was found to be sensitive to the change in criteria weights.
ISSN:0354-2025
2335-0164
DOI:10.22190/FUME210424060U