DESIGN AND EVALUATION OF LIQUISOLID COMPACTS OF NEBIVOLOL HYDROCHLORIDE
Objective: The aim of this study was to investigate the potential of a liquisolid system to improve the dissolution rate and the bioavailability of nebivolol hydrochloride. Methods: Solubility of nebivolol was determined in different nonvolatile solvents to finalize the best nonvolatile vehicle havi...
Gespeichert in:
Veröffentlicht in: | International journal of applied pharmaceutics 2022-03, p.293-307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective: The aim of this study was to investigate the potential of a liquisolid system to improve the dissolution rate and the bioavailability of nebivolol hydrochloride.
Methods: Solubility of nebivolol was determined in different nonvolatile solvents to finalize the best nonvolatile vehicle having maximum solubility. The liquisolid compacts were prepared using Fujicalin as a carrier material, Aerosil 200 as a coating material, Polyethylene glycol 400 as a liquid vehicle, and Croscarmellose sodium as a super disintegrating agent. 23 full factorial design was used to optimize the formulation in which the drug concentration, PVP K 30, Excipient ratio (R), and nebivolol containing nonvolatile solvent liquid level were selected as independent variables by using design expert software. The eight liquisolid compact formulations were prepared. Nebivolol liquisolid compacts were evaluated for drug content, tablet hardness, Friability, disintegration, and dissolution. An in vivo study was carried out in male Wistar rats.
Results: The solubility of nebivolol hydrochloride in polyethylene glycol 400 was found to be greater than the other nonvolatile solvents. The liquisolid system of nebivolol was formulated successfully using Fujicalin, Aerosil 200, and polyethylene glycol 400. In vitro evaluation parameters for the liquisolid compact were within the prescribed limits. It was found that optimized liquisolid tablet formulation showed higher dissolution than the marketed tablet, with 88.33±0.94 % drug release within 120 min and the drug release was more than 75 % in 30 min for nebivolol LS-3N, which is optimized. LS-3N liquisolid compacts follow the Peppas model and exhibited first-order release.
Conclusion: The liquisolid compacts can be a promising alternative for the formulation of water-insoluble drug nebivolol hydrochloride with improved dissolution and bioavailability. |
---|---|
ISSN: | 0975-7058 0975-7058 |
DOI: | 10.22159/ijap.2022v14i2.43657 |