FABRICATION OF DRUG DELIVERY SYSTEM FOR CONTROLLED RELEASE OF CURCUMIN, INTERCALATED WITH MAGNETITE NANOPARTICLES THROUGH SODIUM ALGINATE/POLYVINYLPYRROLIDONE-CO-VINYL ACETATE SEMI IPN MICROBEADS
Objective: The aim of the present work is to fabricate curcumin (CUR) encapsulated microbeads in the polymer matrix of sodium alginate (SA)/poly(vinylpyrrolidone)-co-vinyl acetate (PVP-co-VAc) intercalated with magnetite nanoparticles (MNPs) using glutaraldehyde (GA)/calcium chloride CaCl2 as the cr...
Gespeichert in:
Veröffentlicht in: | International journal of applied pharmaceutics 2020-09, p.249-257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective: The aim of the present work is to fabricate curcumin (CUR) encapsulated microbeads in the polymer matrix of sodium alginate (SA)/poly(vinylpyrrolidone)-co-vinyl acetate (PVP-co-VAc) intercalated with magnetite nanoparticles (MNPs) using glutaraldehyde (GA)/calcium chloride CaCl2 as the crosslinker.
Methods: Magnetite nanoparticles (MNPs) were synthesized by a modified co-precipitation method. Curcumin encapsulated SA/PVP-co-VAc microbeads, intercalated with MNPs were prepared by simple ionotropic gelation technique. The formation of microbeads and uniform distribution of curcumin were characterized using spectroscopic methods. In addition, swelling and drug release kinetic studies of the microbeads were performed in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C.
Results: Microbeads formation was confirmed by Fourier Transform Infrared (FTIR). Differential Scanning Calorimetry (DSC) studies reveal that the peak at 181 °C of CUR was not observed in CUR loaded microbeads, which confirms that CUR was encapsulated at the molecular level in the polymer matrix. The X-Ray diffraction (X-RD) diffractograms of CUR shows 2Ө peaks between 12-28 °, which indicated the crystalline nature of CUR, these peaks are not found in CUR loaded microbeads, suggesting that the drug has been molecularly dispersed in the polymer matrix. The X-RD 2Ө peaks of MNPs are observed in the MNPs loaded microbeads, which confirms that MNPs are successfully loaded in the microbeads. The swelling studies and in vitro release studies were performed at pH 1.2 and 7.4. The results reveal that at pH 7.4 highest swelling and release was observed, which confirms that the developed microbeads are pH sensitive and are suitable for intestinal drug delivery. The drug release kinetics fit into the Korsmeyer-Peppas equation, indicating non-Fickian diffusion.
Conclusion: The results concluded that the present system as dependent on pH of the test medium and hence suggest suitability for intestinal drug delivery. |
---|---|
ISSN: | 0975-7058 0975-7058 |
DOI: | 10.22159/ijap.2020v12i5.37761 |