A SURVEY ON THE CURES FOR THE CURSE OF DIMENSIONALITY IN BIG DATA

Dimensionality reduction techniques are used to reduce the complexity for analysis of high dimensional data sets. The raw input data set may have large dimensions and it might consume time and lead to wrong predictions if unnecessary data attributes are been considered for analysis. So using dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of pharmaceutical and clinical research 2017-04, Vol.10 (13), p.355
Hauptverfasser: Remesh, Reshma, V, Pattabiraman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dimensionality reduction techniques are used to reduce the complexity for analysis of high dimensional data sets. The raw input data set may have large dimensions and it might consume time and lead to wrong predictions if unnecessary data attributes are been considered for analysis. So using dimensionality reduction techniques one can reduce the dimensions of input data towards accurate prediction with less cost. In this paper the different machine learning approaches used for dimensionality reductions such as PCA, SVD, LDA, Kernel Principal Component Analysis and Artificial Neural Network  have been studied.
ISSN:0974-2441
0974-2441
DOI:10.22159/ajpcr.2017.v10s1.19755