APPROXIMATE SOLUTION FOR STOCHASTIC INTERPOLATION OF CONDITIONAL NON-GAUSSIAN FIELDS

The approximate algorithm for stochastic interpolation and extrapolation of conditional non-Gaussian fields proposed in this paper produces a nonlinear unbiased estimator with the characteristic minimum variance of errors. The extended Kalman filtering procedure is then used for solving the conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doboku Gakkai Ronbunshu 1999/04/21, Vol.1999(619), pp.253-266
Hauptverfasser: NODA, Shigeru, NAGAFUNE, Takeshi, HOSHIYA, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The approximate algorithm for stochastic interpolation and extrapolation of conditional non-Gaussian fields proposed in this paper produces a nonlinear unbiased estimator with the characteristic minimum variance of errors. The extended Kalman filtering procedure is then used for solving the conditional estimation problem transformed into the Gaussian stochastic field. A lognormal stochastic field is taken up as an example. The accuracy and efficiency of the proposed method is discussed compared with the theoretical solutions of Simple Kriging. It is found that the proposed method does not suffer from the difficulties associated with computing the optimum estimator and estimated error variance.
ISSN:0289-7806
1882-7187
DOI:10.2208/jscej.1999.619_253