Inferring Gene Networks using Robust Statistical Techniques

Inference of gene networks is an important step in understanding cellular dynamics. In this work, a novel algorithm is proposed for inferring gene networks from gene expression data using linear ordinary differential equations. Under the proposed method, a combination of known statistical tools incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical applications in genetics and molecular biology 2011-05, Vol.10 (1), p.1-30
Hauptverfasser: Nadadoor, Venkat R., Ben-Zvi, Amos, Shah, Sirish L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inference of gene networks is an important step in understanding cellular dynamics. In this work, a novel algorithm is proposed for inferring gene networks from gene expression data using linear ordinary differential equations. Under the proposed method, a combination of known statistical tools including partial least squares (PLS), leave-one-out jackknifing, and the Akaike information criterion (AIC) are used for robust estimation of gene connectivity matrix. The proposed approach is tested and validated using a computer simulated gene network model and an experimental data on a nine gene network in Eschericia coli.
ISSN:2194-6302
1544-6115
DOI:10.2202/1544-6115.1658