Randomized Reductions and the Topology of Conjectured Classes of Uniquely Hamiltonian Graphs

We utilize the hardness of the Unambiguous-SAT problem under randomized polynomial time reductions (Valiant & Vazirani; Theoret. Comput. Sci., Vol.47, 1986) to probe the required properties of counterexamples to open non-existence conjectures for uniquely Hamiltonian graphs under various topolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Information Processing 2020, Vol.28, pp.876-888
Hauptverfasser: Barish, Robert D., Suyama, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We utilize the hardness of the Unambiguous-SAT problem under randomized polynomial time reductions (Valiant & Vazirani; Theoret. Comput. Sci., Vol.47, 1986) to probe the required properties of counterexamples to open non-existence conjectures for uniquely Hamiltonian graphs under various topological constraints. Concerning ourselves with a generalization of Sheehan's 1975 conjecture that no uniquely Hamiltonian graphs exist in the class of (r ∈ 2 ℕ>1)-regular graphs (for 4 ≤ r ≤ 22), Bondy & Jackson's 1998 conjecture that no uniquely Hamiltonian graphs exist in the class of planar graphs having at most one vertex of degree ≤ 2, and Fleischner's 2014 conjecture that no uniquely Hamiltonian graphs exist in the class of 4-vertex-connected graphs, we prove that each conjecture is false if and only if there exists a parsimonious reduction from #SAT to counting Hamiltonian cycles on each graph class in question. As the existence of such a reduction allows for the encoding of arbitrary Unambiguous-SAT problem instances, by the Valiant-Vazirani theorem we have that hypothetical sets of counterexamples for each non-existence conjecture cannot belong to any graph class with a polynomial time testable property implying tractability for the Hamiltonian cycle decision problem (unless NP = RP).
ISSN:1882-6652
1882-6652
DOI:10.2197/ipsjjip.28.876