Continuous Flattening of α-Trapezoidal Polyhedra
It was proved that any orthogonal polyhedron is continuously flattened by using a property of a rhombus. We investigated the method precisely, and found that there are infinitely many ways to flatten such polyhedra. We prove that the infimum of the area of moving creases is zero for α-trapezoidal po...
Gespeichert in:
Veröffentlicht in: | Journal of Information Processing 2017, Vol.25, pp.554-558 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It was proved that any orthogonal polyhedron is continuously flattened by using a property of a rhombus. We investigated the method precisely, and found that there are infinitely many ways to flatten such polyhedra. We prove that the infimum of the area of moving creases is zero for α-trapezoidal polyhedra, which is a generalization of semi-orthogonal polyhedra. Also we prove that, for any integer n, there exists a continuous flattening motion whose area of moving creases is arbitrarily small for any n-gonal pyramid with a circumscribed base and a top vertex being just above the incenter of the base. As a by-product we provide a continuous flattening motion whose area of moving creases is arbitrarily small for more general types of polyhedra. |
---|---|
ISSN: | 1882-6652 1882-6652 |
DOI: | 10.2197/ipsjjip.25.554 |