DEEP NEURAL MULTI WAVELET SEGMENTATION AND RESNET-50 IMAGE CLASSIFICATION (DNMWS-RESNET-50IC) BASED EARLY GLAUCOMA DETECTION
Glaucoma, a leading cause of irreversible blindness worldwide, results from progressive damage to the optic nerve, often linked to elevated Intra Ocular Pressure (IOP). Early detection is critical for preventing vision loss, yet traditional diagnostic methods can be limited in accessibility and effe...
Gespeichert in:
Veröffentlicht in: | ICTACT journal on image and video processing 2024-08, Vol.15 (1), p.3338-3346 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glaucoma, a leading cause of irreversible blindness worldwide, results from progressive damage to the optic nerve, often linked to elevated Intra Ocular Pressure (IOP). Early detection is critical for preventing vision loss, yet traditional diagnostic methods can be limited in accessibility and effectiveness, particularly in the early stages of the disease. Addressing the need for early detection, we propose the Deep Neural Multi-Wavelet Segmentation and ResNet-50 Image Classification (DNMWS-ResNet-50IC) method, specifically designed to detect glaucoma at an early stage using retinal fundus images. In this work, we apply Anisotropic Gaussian Filtering for the preprocessing of retinal fundus images, effectively reducing image noise while preserving the original quality of the image pixels by creating an adaptive window size and scale space. We then utilize multi- wavelet-based image segmentation, leveraging wavelet transforms to analyze and decompose the image into its various frequency components. This technique is particularly advantageous for managing images with complex structures and textures. Subsequently, the segmented features are classified using the ResNet-50 model, which categorizes the images as normal, abnormal, or indicative of early- stage glaucoma. The effectiveness of the proposed method is assessed by measuring three key performance indicators sensitivity, specificity, and accuracy on digital retinal images from the HRF image database. Additionally, the model's performance is further evaluated on a separate test set, considering metrics such as accuracy, precision, recall, and prediction time. |
---|---|
ISSN: | 0976-9099 0976-9102 |
DOI: | 10.21917/ijivp.2024.0474 |