Determinação de amido e carboidrato em folhas de mangueira com o uso espectroscopia Vis-NIR

Mango production presents challenges, such as the maturation of the mango branches, which, combined with good nutrition and biochemicals involved in this process, such as carbohydrate and starch favor the development of the plant. Therefore, the use of non-destructive, fast techniques to determine t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Temas agrarios (Montería, Córdoba, Colombia) Córdoba, Colombia), 2023-05, Vol.27 (2), p.397-410
Hauptverfasser: Alves Santana, Elisson, Dos Santos Costa, Daniel, Francismar de Medeiros, Jose
Format: Artikel
Sprache:spa
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mango production presents challenges, such as the maturation of the mango branches, which, combined with good nutrition and biochemicals involved in this process, such as carbohydrate and starch favor the development of the plant. Therefore, the use of non-destructive, fast techniques to determine the levels of these components in the plant, such as spectroscopy, can optimize the analysis of these components. Therefore, this work aimed to develop predictive models for determination of starch and carbohydrate contents in “Palmer” mango leaves using vis-nir spectroscopy subjected to different potassium sources. The work was carried out in the region of San Francisco Valley, using the following steps: (1) leaf sampling; (2) spectral analysis; (3) lab determination of carbohydrate and starch contents; and (4) development of predictive regression and classification models. The predictive regression models used were Principal Components Regression (PCR) and Partial Least Squares Regression (PLSR). Supervised discriminant models were also developed to classify mango leaves according to different potassium sources used, using linear discriminant analysis (LDA). Vis-NIR spectroscopy showed low values for the non-destructive evaluation of “Palmer” mango leaves using PCR and PLSR for carbohydrate and starch prediction with R2 of 0.58 lower than the models considered excellent (R2 >0.90); The development of classification models did not allow the discrimination of different sources of potassium in “Palmer” mango leaves with an accuracy of 64.2%. A produção de manga apresenta desafios, como a maturação dos ramos da mangueira, que aliada a boa nutrição e bioquímicos envolvidos nesse processo como o carboidrato e o amido favorece o desenvolvimento do vegetal. A utilização de técnicas não destrutivas e rápidas para determinar os teores desses componentes na planta, como a espectroscopia, pode otimizar a realização das análises desses componentes. Diante disso, este trabalho teve como objetivo desenvolver modelos preditivos para determinação de teores de amido e carboidratos em folhas de mangueira “Palmer” com o uso da espectroscopia Vis-NIR submetidas a diferentes fontes de potássio. O trabalho foi desenvolvido na região do Vale do São Francisco, seguindo as seguintes etapas: (1) a amostragem das folhas; (2) análise espectrais; (3) determinação em laboratório dos teores de carboidratos e amido; e (4) desenvolvimento dos modelos preditivos de regressão e classificação. Os
ISSN:2389-9182
2389-9182
DOI:10.21897/rta.v27i2.3114