An Interior Point Method for Linear Programming Using Weighted Analytic Centers
Let R be the convex subset of x ∈ IRn defined by q linear inequalities where x, aj ∈ IRn and bj ∈ IR. Given a strictly positive vector ω; ∈ IRq, the weighted analytic center xac(ω;) is the minimizer of the strictly convex function over the interior of R. We consider the linear programming problem (L...
Gespeichert in:
Veröffentlicht in: | Journal of the Arizona-Nevada Academy of Science 2009-01, Vol.41 (1), p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be the convex subset of x ∈ IRn defined by q linear inequalities where x, aj ∈ IRn and bj ∈ IR. Given a strictly positive vector ω; ∈ IRq, the weighted analytic center xac(ω;) is the minimizer of the strictly convex function over the interior of R. We consider the linear programming problem (LP): max{cTx|x ∈ R}. We give an interior point method for solving the LP that uses weighted analytic centers. We test its performance and limitations using a variety of LP problems. We also compare the method with the well-known logarithmic barrier method. |
---|---|
ISSN: | 1533-6085 0193-8509 1533-6085 |
DOI: | 10.2181/036.041.0101 |