An Interior Point Method for Linear Programming Using Weighted Analytic Centers

Let R be the convex subset of x ∈ IRn defined by q linear inequalities where x, aj ∈ IRn and bj ∈ IR. Given a strictly positive vector ω; ∈ IRq, the weighted analytic center xac(ω;) is the minimizer of the strictly convex function over the interior of R. We consider the linear programming problem (L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Arizona-Nevada Academy of Science 2009-01, Vol.41 (1), p.1-7
Hauptverfasser: Anderson, Julianne, Jibrin, Shafiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be the convex subset of x ∈ IRn defined by q linear inequalities where x, aj ∈ IRn and bj ∈ IR. Given a strictly positive vector ω; ∈ IRq, the weighted analytic center xac(ω;) is the minimizer of the strictly convex function over the interior of R. We consider the linear programming problem (LP): max{cTx|x ∈ R}. We give an interior point method for solving the LP that uses weighted analytic centers. We test its performance and limitations using a variety of LP problems. We also compare the method with the well-known logarithmic barrier method.
ISSN:1533-6085
0193-8509
1533-6085
DOI:10.2181/036.041.0101