Survival of cryptosporidium parvum, escherichia coli, faecal enterococci and clostridium perfringens in river water: influence of temperature and autochthonous microorganisms
Oocysts of Cryptosporidium parvum can survive for several months in surface water, one of the main factors determining their success in environmental transmission and thus their health hazard via water. Several factors in the environment, e.g. temperature, presence of predators and exo-enzymes will...
Gespeichert in:
Veröffentlicht in: | Water science and technology 1997-06, Vol.35 (11-12), p.249-252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oocysts of Cryptosporidium parvum can survive for several months in surface water, one of the main factors determining their success in environmental transmission and thus their health hazard via water. Several factors in the environment, e.g. temperature, presence of predators and exo-enzymes will probably influence oocyst survival. The high persistence of oocysts may also limit the value of traditional faecal indicator bacteria. The aim of this study was to determine the rate at which C parvum oocysts, E coli, faecal enterococci and C perfringens spores die in surface water and the influence of temperature and the presence of autochthonous (micro)organisms on the die-off rate. Microcosms with autoclaved river water were inoculated with the organisms. Microcosms with untreated river water were inoculated with concentrated primary effluent containing the bacteria and with C parvum oocysts. Microcosms were incubated at 5°C or 15°C at 100rpm. Viability of oocysts was monitored by in vitro excystation and dye-exclusion; viability of the bacteria was determined on appropriate selective media. When pseudo first-order die-off kinetics were assumed, the die-off rate of oocysts at 5°C was 0.010 log10/d and at 15°C, 0.006–0.024 log10/d. These rates underestimate die-off since oocyst disintegration was not accounted for. Incubation in autoclaved or untreated water did influence the die-off rate of oocysts at 15°C but not at 5°C. The die-off rate of E coli and enterococci was faster in the non-sterile river water than in autoclaved water at both temperatures. At 15°C, E coli (and possibly E faecium) even multiplied in autoclaved water. In untreated river water, the die-off of E coli and enterococci was approximately 10x faster than die-off of oocysts but die-off rates of C perfringens were lower than those of oocysts. As for oocysts, die-off of the bacteria and spores was faster at 15°C than at 5°C. Oocysts are very persistent in river water: the time required for a 10x reduction in viability being 40–160d at 15°C and 100d at 5°C. Biological/biochemical activity influenced oocyst survival at 15°C and survival of both vegetative bacteria at 5 and 15°C. The rapid die-off of E coli and enterococci makes them less suitable as indicators of oocyst presence in water. As C perfringens survived longer in untreated river water than oocysts, it may prove useful as an indicator of the presence of C parvum. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.1997.0742 |