Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis
Low-dose pulse methotrexate has emerged as one of the most frequently used slow-acting, symptom-modifying antirheumatic drugs in patients with rheumatoid arthritis (RA) because of its favourable risk-benefit profile. Methotrexate is a weak bicarboxylic acid structurally related to folic acid. The mo...
Gespeichert in:
Veröffentlicht in: | Clinical pharmacokinetics 1996-03, Vol.30 (3), p.194-210 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-dose pulse methotrexate has emerged as one of the most frequently used slow-acting, symptom-modifying antirheumatic drugs in patients with rheumatoid arthritis (RA) because of its favourable risk-benefit profile. Methotrexate is a weak bicarboxylic acid structurally related to folic acid. The most widely used methods for the analysis of methotrexate are immunoassays, particularly fluorescence polarisation immunoassay. After oral administration, the drug is rapidly but incompletely absorbed. Since food does not significantly affect the bioavailability of oral methotrexate in adult patients, the drug may be taken regardless of meals. There is a marked interindividual variability in the extent of absorption of oral methotrexate. Conversely, the intraindividual variability is moderate even over a long time period. Intramuscular and subcutaneous injections of methotrexate result in comparable pharmacokinetics, suggesting that these routes of administration are interchangeable. A mean protein binding to serum albumin of 42 to 57% is usually reported. Again, the unbound fraction exhibits a large interindividual variability. The steady-state volume of distribution is approximately 1 L/kg. Methotrexate distributes to extravascular compartments, including synovial fluid, and to different tissues, especially kidney, liver and joint tissues. Finally, the drug is transported into cells, mainly by a carrier-mediated active transport process. Methotrexate is partly oxidised by hepatic aldehyde oxidase to 7-hydroxymethotrexate. This main, circulating metabolite is over 90% bound to serum albumin. Both methotrexate and 7-hydroxy-methotrexate may be converted to polyglutamyl derivatives which are selectively retained in cells. Methotrexate is mainly excreted by the kidney as intact drug regardless of the route of administration. The drug is filtered by the glomeruli, and then undergoes both secretion and reabsorption processes within the tubule. These processes are differentially saturable, resulting in possible nonlinear elimination pharmacokinetics. The usually reported mean values for the elimination half-life and the total body clearance of methotrexate are 5 to 8 hours and 4.8 to 7.8 L/h, respectively. A positive correlation between methotrexate clearance and creatinine clearance has been found by some authors. Finally, the pharmacokinetics of low-dose methotrexate appears to be highly variable and largely unpredictable even in patients with normal renal and hepati |
---|---|
ISSN: | 0312-5963 1179-1926 |
DOI: | 10.2165/00003088-199630030-00002 |