Hydroponic Nutrient Control System Based on Internet of Things

The human population significantly increases in crowded urban areas. It causes a reduction of available farming land. Therefore, a landless planting method is needed to supply the food for society. Hydroponics is one of the solutions for gardening methods without using soil. It uses nutrient-enriche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CommIT (Communication and Information Technology) Journal 2019-10, Vol.13 (2), p.105─111-105─111
Hauptverfasser: Herman, Herman, Adidrana, Demi, Surantha, Nico, Suharjito, Suharjito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The human population significantly increases in crowded urban areas. It causes a reduction of available farming land. Therefore, a landless planting method is needed to supply the food for society. Hydroponics is one of the solutions for gardening methods without using soil. It uses nutrient-enriched mineral water as a nutrition solution for plant growth. Traditionally, hydroponic farming is conducted manually by monitoring the nutrition such as acidity or basicity (pH), the value of Total Dissolved Solids (TDS), Electrical Conductivity (EC), and nutrient temperature. In this research, the researchers propose a system that measures pH, TDS, and nutrient temperature values in the Nutrient Film Technique (NFT) technique using a couple of sensors. The researchers use lettuce as an object of experiment and apply the k-Nearest Neighbor (k-NN) algorithm to predict the classification of nutrient conditions. The result of prediction is used to provide a command to the microcontroller to turn on or off the nutrition controller actuators simultaneously at a time. The experiment result shows that the proposed k-NN algorithm achieves 93.3% accuracy when it is k = 5.
ISSN:1979-2484
2460-7010
DOI:10.21512/commit.v13i2.6016