A Simple Geometric Proof that Comonotonic Risks Have the Convex-Largest Sum

In the recent actuarial literature, several proofs have been given for the fact that if a random vector (X1X2, …, Xn) with given marginals has a comonotonic joint distribution, the sum X1 + X2 + … + Xn is the largest possible in convex order. In this note we give a lucid proof of this fact, based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASTIN Bulletin : The Journal of the IAA 2002-05, Vol.32 (1), p.71-80
Hauptverfasser: Kaas, R., Dhaene, J., Vyncke, D., Goovaerts, M.J., Denuit, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the recent actuarial literature, several proofs have been given for the fact that if a random vector (X1X2, …, Xn) with given marginals has a comonotonic joint distribution, the sum X1 + X2 + … + Xn is the largest possible in convex order. In this note we give a lucid proof of this fact, based on a geometric interpretation of the support of the comonotonic distribution.
ISSN:0515-0361
1783-1350
DOI:10.2143/AST.32.1.1015