A Simple Geometric Proof that Comonotonic Risks Have the Convex-Largest Sum
In the recent actuarial literature, several proofs have been given for the fact that if a random vector (X1X2, …, Xn) with given marginals has a comonotonic joint distribution, the sum X1 + X2 + … + Xn is the largest possible in convex order. In this note we give a lucid proof of this fact, based on...
Gespeichert in:
Veröffentlicht in: | ASTIN Bulletin : The Journal of the IAA 2002-05, Vol.32 (1), p.71-80 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the recent actuarial literature, several proofs have been given for the fact that if a random vector (X1X2, …, Xn) with given marginals has a comonotonic joint distribution, the sum X1 + X2 + … + Xn is the largest possible in convex order. In this note we give a lucid proof of this fact, based on a geometric interpretation of the support of the comonotonic distribution. |
---|---|
ISSN: | 0515-0361 1783-1350 |
DOI: | 10.2143/AST.32.1.1015 |