Phenological Temperature Response of Maize

Variability of development rate estimates across locations and years using the current heat unit system of growing degree‐days (GDD) with maximum and minimum temperature thresholds of 30 and 10°C (GDD30,10) limits predictability of maturity in hybrid maize (Zea mays L.). Data sets of daily maximum a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy journal 1998-01, Vol.90 (1), p.73-79
Hauptverfasser: Stewart, Douglas W., Dwyer, Lianne M., Carrigan, Lori L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1
container_start_page 73
container_title Agronomy journal
container_volume 90
creator Stewart, Douglas W.
Dwyer, Lianne M.
Carrigan, Lori L.
description Variability of development rate estimates across locations and years using the current heat unit system of growing degree‐days (GDD) with maximum and minimum temperature thresholds of 30 and 10°C (GDD30,10) limits predictability of maturity in hybrid maize (Zea mays L.). Data sets of daily maximum and minimum air temperatures and dates of maize development stages were collected for a range of hybrids at locations in Canada and the northern USA (39° to 45° N lat). Data were analyzed to improve the temperature response functions for maize at different stages of development. Results indicate that during vegetative growth, phenological response to mean daily air temperature followed a sigmoidal curve beginning below 5°C, with maximum response to temperatures between 25 and 30°C. During reproductive growth, the temperature response function was flat from 0 to 12°C and rose significantly only with mean daily air temperatures greater than this range. A general thermal index (GTI) based on these two response functions improved estimation of maturity dates by 50% over estimates made using GDD30,10 (SE of 6.7 d for GTI and 13.6 d for GDD30,10 in estimating time from planting to maturity). The greatest improvement using GTI occurred for the reproductive period (SE of 5.8 d using GTI, compared with 12.1 d using GDD30,10). These results suggest that incorporating the temperature response function reported in this paper would improve prediction of maize development.
doi_str_mv 10.2134/agronj1998.00021962009000010014x
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2134_agronj1998_00021962009000010014x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AGJ2AGRONJ199800021962009000010014X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458X-9dd7c025c34977146aeb3c9fc9ef33c1fbd0f842e0f8f44b261f61a77f9f5ae93</originalsourceid><addsrcrecordid>eNqVj0FLwzAUgIMoOKf_oQcPInTmJWm73BxDq2M6GRN2K2n2Mju6tiQTnb_elIpedhHCyzt8fI-PkCugAwZc3Ki1rasNSDkcUEoZyJhRKv1KwT_xeUR6IHgU0lhEx6TXMmELnZIz5zYeASmgR65f3rCqy3pdaFUGC9w2aNXu3WIwR9fUlcOgNsGTKr7wnJwYVTq8-Pn75PX-bjF-CKez9HE8moZaRMNlKFerRFMWaS5kkoCIFeZcS6MlGs41mHxFzVAw9NMIkbMYTAwqSYw0kULJ--S282pbO2fRZI0ttsruM6BZ2579tWcH273islM0yvkuY1WlC_frYYwDT2KPqQ77KErc__tMNkonbJTOZ8-TFjrELPk309l2gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phenological Temperature Response of Maize</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stewart, Douglas W. ; Dwyer, Lianne M. ; Carrigan, Lori L.</creator><creatorcontrib>Stewart, Douglas W. ; Dwyer, Lianne M. ; Carrigan, Lori L.</creatorcontrib><description>Variability of development rate estimates across locations and years using the current heat unit system of growing degree‐days (GDD) with maximum and minimum temperature thresholds of 30 and 10°C (GDD30,10) limits predictability of maturity in hybrid maize (Zea mays L.). Data sets of daily maximum and minimum air temperatures and dates of maize development stages were collected for a range of hybrids at locations in Canada and the northern USA (39° to 45° N lat). Data were analyzed to improve the temperature response functions for maize at different stages of development. Results indicate that during vegetative growth, phenological response to mean daily air temperature followed a sigmoidal curve beginning below 5°C, with maximum response to temperatures between 25 and 30°C. During reproductive growth, the temperature response function was flat from 0 to 12°C and rose significantly only with mean daily air temperatures greater than this range. A general thermal index (GTI) based on these two response functions improved estimation of maturity dates by 50% over estimates made using GDD30,10 (SE of 6.7 d for GTI and 13.6 d for GDD30,10 in estimating time from planting to maturity). The greatest improvement using GTI occurred for the reproductive period (SE of 5.8 d using GTI, compared with 12.1 d using GDD30,10). These results suggest that incorporating the temperature response function reported in this paper would improve prediction of maize development.</description><identifier>ISSN: 0002-1962</identifier><identifier>EISSN: 1435-0645</identifier><identifier>DOI: 10.2134/agronj1998.00021962009000010014x</identifier><identifier>CODEN: AGJOAT</identifier><language>eng</language><publisher>Madison, WI: American Society of Agronomy</publisher><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Climatic models of plant production ; Economic plant physiology ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Generalities ; Generalities. Techniques. Climatology. Meteorology. Climatic models of plant production ; Growth and development</subject><ispartof>Agronomy journal, 1998-01, Vol.90 (1), p.73-79</ispartof><rights>Copyright © 1998 American Society of Agronomy</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458X-9dd7c025c34977146aeb3c9fc9ef33c1fbd0f842e0f8f44b261f61a77f9f5ae93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fagronj1998.00021962009000010014x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fagronj1998.00021962009000010014x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2231376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stewart, Douglas W.</creatorcontrib><creatorcontrib>Dwyer, Lianne M.</creatorcontrib><creatorcontrib>Carrigan, Lori L.</creatorcontrib><title>Phenological Temperature Response of Maize</title><title>Agronomy journal</title><description>Variability of development rate estimates across locations and years using the current heat unit system of growing degree‐days (GDD) with maximum and minimum temperature thresholds of 30 and 10°C (GDD30,10) limits predictability of maturity in hybrid maize (Zea mays L.). Data sets of daily maximum and minimum air temperatures and dates of maize development stages were collected for a range of hybrids at locations in Canada and the northern USA (39° to 45° N lat). Data were analyzed to improve the temperature response functions for maize at different stages of development. Results indicate that during vegetative growth, phenological response to mean daily air temperature followed a sigmoidal curve beginning below 5°C, with maximum response to temperatures between 25 and 30°C. During reproductive growth, the temperature response function was flat from 0 to 12°C and rose significantly only with mean daily air temperatures greater than this range. A general thermal index (GTI) based on these two response functions improved estimation of maturity dates by 50% over estimates made using GDD30,10 (SE of 6.7 d for GTI and 13.6 d for GDD30,10 in estimating time from planting to maturity). The greatest improvement using GTI occurred for the reproductive period (SE of 5.8 d using GTI, compared with 12.1 d using GDD30,10). These results suggest that incorporating the temperature response function reported in this paper would improve prediction of maize development.</description><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Climatic models of plant production</subject><subject>Economic plant physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Generalities</subject><subject>Generalities. Techniques. Climatology. Meteorology. Climatic models of plant production</subject><subject>Growth and development</subject><issn>0002-1962</issn><issn>1435-0645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqVj0FLwzAUgIMoOKf_oQcPInTmJWm73BxDq2M6GRN2K2n2Mju6tiQTnb_elIpedhHCyzt8fI-PkCugAwZc3Ki1rasNSDkcUEoZyJhRKv1KwT_xeUR6IHgU0lhEx6TXMmELnZIz5zYeASmgR65f3rCqy3pdaFUGC9w2aNXu3WIwR9fUlcOgNsGTKr7wnJwYVTq8-Pn75PX-bjF-CKez9HE8moZaRMNlKFerRFMWaS5kkoCIFeZcS6MlGs41mHxFzVAw9NMIkbMYTAwqSYw0kULJ--S282pbO2fRZI0ttsruM6BZ2579tWcH273islM0yvkuY1WlC_frYYwDT2KPqQ77KErc__tMNkonbJTOZ8-TFjrELPk309l2gA</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Stewart, Douglas W.</creator><creator>Dwyer, Lianne M.</creator><creator>Carrigan, Lori L.</creator><general>American Society of Agronomy</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199801</creationdate><title>Phenological Temperature Response of Maize</title><author>Stewart, Douglas W. ; Dwyer, Lianne M. ; Carrigan, Lori L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458X-9dd7c025c34977146aeb3c9fc9ef33c1fbd0f842e0f8f44b261f61a77f9f5ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Climatic models of plant production</topic><topic>Economic plant physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Generalities</topic><topic>Generalities. Techniques. Climatology. Meteorology. Climatic models of plant production</topic><topic>Growth and development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, Douglas W.</creatorcontrib><creatorcontrib>Dwyer, Lianne M.</creatorcontrib><creatorcontrib>Carrigan, Lori L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Agronomy journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, Douglas W.</au><au>Dwyer, Lianne M.</au><au>Carrigan, Lori L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenological Temperature Response of Maize</atitle><jtitle>Agronomy journal</jtitle><date>1998-01</date><risdate>1998</risdate><volume>90</volume><issue>1</issue><spage>73</spage><epage>79</epage><pages>73-79</pages><issn>0002-1962</issn><eissn>1435-0645</eissn><coden>AGJOAT</coden><abstract>Variability of development rate estimates across locations and years using the current heat unit system of growing degree‐days (GDD) with maximum and minimum temperature thresholds of 30 and 10°C (GDD30,10) limits predictability of maturity in hybrid maize (Zea mays L.). Data sets of daily maximum and minimum air temperatures and dates of maize development stages were collected for a range of hybrids at locations in Canada and the northern USA (39° to 45° N lat). Data were analyzed to improve the temperature response functions for maize at different stages of development. Results indicate that during vegetative growth, phenological response to mean daily air temperature followed a sigmoidal curve beginning below 5°C, with maximum response to temperatures between 25 and 30°C. During reproductive growth, the temperature response function was flat from 0 to 12°C and rose significantly only with mean daily air temperatures greater than this range. A general thermal index (GTI) based on these two response functions improved estimation of maturity dates by 50% over estimates made using GDD30,10 (SE of 6.7 d for GTI and 13.6 d for GDD30,10 in estimating time from planting to maturity). The greatest improvement using GTI occurred for the reproductive period (SE of 5.8 d using GTI, compared with 12.1 d using GDD30,10). These results suggest that incorporating the temperature response function reported in this paper would improve prediction of maize development.</abstract><cop>Madison, WI</cop><pub>American Society of Agronomy</pub><doi>10.2134/agronj1998.00021962009000010014x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-1962
ispartof Agronomy journal, 1998-01, Vol.90 (1), p.73-79
issn 0002-1962
1435-0645
language eng
recordid cdi_crossref_primary_10_2134_agronj1998_00021962009000010014x
source Wiley Online Library Journals Frontfile Complete
subjects Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agricultural and forest meteorology
Agronomy. Soil science and plant productions
Biological and medical sciences
Climatic models of plant production
Economic plant physiology
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Generalities
Generalities. Techniques. Climatology. Meteorology. Climatic models of plant production
Growth and development
title Phenological Temperature Response of Maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenological%20Temperature%20Response%20of%20Maize&rft.jtitle=Agronomy%20journal&rft.au=Stewart,%20Douglas%20W.&rft.date=1998-01&rft.volume=90&rft.issue=1&rft.spage=73&rft.epage=79&rft.pages=73-79&rft.issn=0002-1962&rft.eissn=1435-0645&rft.coden=AGJOAT&rft_id=info:doi/10.2134/agronj1998.00021962009000010014x&rft_dat=%3Cwiley_cross%3EAGJ2AGRONJ199800021962009000010014X%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true