Genotype × Environment Interactions for Potato Tuber Carotenoid Content
Consumption of carotenoid-containing foods can promote human health. Although yellow-fleshed potatoes ( Solanum tuberosum ) have a higher carotenoid content than white-fleshed potatoes, little is known about how growing environments may affect individual and total carotenoid content in different pot...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Horticultural Science 2010-05, Vol.135 (3), p.250-258 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consumption of carotenoid-containing foods can promote human health. Although yellow-fleshed potatoes (
Solanum tuberosum
) have a higher carotenoid content than white-fleshed potatoes, little is known about how growing environments may affect individual and total carotenoid content in different potato clones. The purposes of this study were to estimate the amount of genetic variability in potato for five xanthophyll carotenoids, their concentration, and to determine the stability of these carotenoids across environments. Nine white- or yellow-fleshed tetraploid clones were grown in Maine and Florida for 2 years. Carotenoids were extracted in acetone and analyzed by high-performance liquid chromatography. There were significant differences among clones for zeaxanthin, antheraxanthin, lutein, and total carotenoid content. There were significant clone × environment interactions for zeaxanthin, antheraxanthin, violaxanthin, neoxanthin, lutein, and total carotenoid. Broad-sense heritabilities (and their 95% confidence intervals) were 0.89 (0.79–0.98) for zeaxanthin, 0.93 (0.87–0.99) for antheraxanthin, 0.68 (0.14–0.92) for violaxanthin, 0.51 (0.00–0.88) for neoxanthin, 0.85 (0.70–0.97) for lutein, and 0.96 (0.89–0.99) for total carotenoid. Clonal mean total carotenoid content ranged from 101 to 511 μg/100 g fresh weight. A higher proportion of carotenoids were produced by the lycopene epsilon cyclase branch of the carotenoid biosynthetic pathway in white-fleshed than yellow-fleshed clones. Total carotenoid content in B2333-5 was significantly greater than in ‘Yukon Gold’. With genetic variation for individual and total carotenoid content in potatoes, improving the levels of carotenoids has been and should continue to be feasible; however, concentrations are likely to vary in different environments. |
---|---|
ISSN: | 0003-1062 2327-9788 |
DOI: | 10.21273/JASHS.135.3.250 |