Effects of mulch and irrigation system on sweet onion. I. Bolting, plant growth, and bulb yield and quality

Sweet onions (Allium cepa L.) are typically grown on bare soil and irrigated with high-pressure systems such as sprinklers or center-pivots. The objective of this study was to determine the effects of irrigation system and mulch on bolting, bulb yield and bulb quality over 3 years. The experimental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Horticultural Science 2004-03, Vol.129 (2), p.218-224
Hauptverfasser: Diaz-Perez, J.C, Randle, W.M, Boyhan, G, Walcott, R.W, Giddings, D, Bertrand, D, Sanders, H.F, Gitaitis, R.D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sweet onions (Allium cepa L.) are typically grown on bare soil and irrigated with high-pressure systems such as sprinklers or center-pivots. The objective of this study was to determine the effects of irrigation system and mulch on bolting, bulb yield and bulb quality over 3 years. The experimental design was a split plot, where the main plot was irrigation system (drip or sprinkler) and the subplot was the type of mulch (bare soil, black plastic film or wheat straw). The results showed that individual bulb weight and bulb yields under drip irrigation were similar to those under sprinkler irrigation. Plants grown on bare soil had the highest total yield during the three seasons and among the highest marketable yield. There were no consistent differences in the bulb number or yield of plants on plastic film mulch compared to those of plants on wheat straw mulch. Plants on wheat straw mulch had reduced foliar nitrogen content. Variability in yields among mulches and seasons was partly explained by changes in seasonal root zone temperature and soil water potential. Total and marketable yields and weight of individual bulbs increased with increasing root zone temperatures up to an optimum at 15.8 degrees C, followed by reductions in yields and individual bulb weight at >15.8 degrees C. Onion bolting increased with decreasing foliage nitrogen content, with plants on wheat straw having the highest bolting incidence. Bolting also increased with decreasing root zone temperatures for the season. Total and marketable yields increased with decreasing mean seasonal soil water potential down to -30 kPa. Irrigation system and mulches had no consistent effect on the soluble solids content or pungency of onion bulbs.
ISSN:0003-1062
2327-9788
DOI:10.21273/jashs.129.2.0218