Transcriptomic Study of Early Responses to the Bud Dormancy-breaking Agent Hydrogen Cyanamide in ‘TropicBeauty’ Peach

To determine how the dormancy-breaking agent hydrogen cyanamide (HC) advances budbreak in peach ( Prunus persica ), this study compared the transcriptome of buds of low-chill ‘TropicBeauty’ peach trees treated with 1% (v/v) HC and that of nontreated trees at 3 and 7 days after treatment (DAT), respe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Horticultural Science 2019-07, Vol.144 (4), p.244-256
Hauptverfasser: Tang, Lisa, Chhajed, Shweta, Vashisth, Tripti, Olmstead, Mercy A., Olmstead, James W., Colquhoun, Thomas A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine how the dormancy-breaking agent hydrogen cyanamide (HC) advances budbreak in peach ( Prunus persica ), this study compared the transcriptome of buds of low-chill ‘TropicBeauty’ peach trees treated with 1% (v/v) HC and that of nontreated trees at 3 and 7 days after treatment (DAT), respectively, using an RNA sequencing analysis. The peak of total budbreak occurred 6 weeks earlier in the HC-treated trees (at 32 DAT) than the nontreated trees (at 74 DAT). There were 1312 and 1095 differentially expressed genes (DEGs) at 3 and 7 DAT, respectively. At 3 DAT, DEGs related to oxidative stress, including the response to hypoxia, lipid oxidation, and reactive oxygen species (ROS) metabolic process, were upregulated in HC-treated buds. Additionally, DEGs encoding enzymes for ROS scavenging and the pentose phosphate pathway were upregulated at 3 DAT but they were not differently expressed at 7 DAT, indicating a temporary demand for defense mechanisms against HC-triggered oxidative stress. Upregulation of DEGs for cell division and development at 7 DAT, which were downregulated at 3 DAT, suggests that cell activity was initially suppressed but was enhanced within 7 DAT. At 7 DAT, DEGs related to cell wall degradation and modification were upregulated, which was possibly responsible for the burst of buds. The results of this study strongly suggest that HC induces transient oxidative stress shortly after application, leading to the release of bud dormancy and, subsequently, causing an increase in cell activity and cell wall loosening, thereby accelerating budbreak in peach.
ISSN:0003-1062
2327-9788
DOI:10.21273/JASHS04686-19