A Class of Jump-Diffusion Stochastic Differential System Under Markovian Switching and Analytical Properties of Solutions

Our article discusses a class of Jump-diffusion stochastic differential system under Markovian switching (JD-SDS-MS). This model is generated by introducing Poisson process and Markovian switching based on a normal stochastic differential equation. Our work dedicates to analytical properties of solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and information 2020-03, Vol.8 (1), p.17-32
Hauptverfasser: Liu, Xiangdong, Mi, Zeyu, Chen, Huida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our article discusses a class of Jump-diffusion stochastic differential system under Markovian switching (JD-SDS-MS). This model is generated by introducing Poisson process and Markovian switching based on a normal stochastic differential equation. Our work dedicates to analytical properties of solutions to this model. First, we give some properties of the solution, including existence, uniqueness, non-negative and global nature. Next, boundedness of first moment of the solution to this model is considered. Third, properties about coefficients of JD-SDS-MS is proved by using a right continuous markov chain. Last, we study the convergence of Euler-Maruyama numerical solutions and apply it to pricing bonds.
ISSN:2512-6660
2512-6660
DOI:10.21078/JSSI-2020-017-16