Neural Adaptive Approach-Application to Robot Force Control in an Unknown Environment

This paper presents an effective neural adaptive approach for robot force control with changing/unknown robot-environment interaction dynamic properties. In this approach, a multilayered neural network controller is trained at first off line from data collected during contact motion in order to perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of robotics and mechatronics 2006-10, Vol.18 (5), p.529-538
Hauptverfasser: Amirat, Yacine, Djouani, Karim, Kirad, Mohamed, Saadia, Nadia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 5
container_start_page 529
container_title Journal of robotics and mechatronics
container_volume 18
creator Amirat, Yacine
Djouani, Karim
Kirad, Mohamed
Saadia, Nadia
description This paper presents an effective neural adaptive approach for robot force control with changing/unknown robot-environment interaction dynamic properties. In this approach, a multilayered neural network controller is trained at first off line from data collected during contact motion in order to perform a smooth transition from free to contact motion. Then, an adaptive process is implemented online through a desired impedance reference model such that the closed-loop system maintains a good performance and compensates for uncertain/unknown dynamics of the robot-environment interaction. The effectiveness of the proposed approach has been evaluated for the force control of a 6 DOF (Degree Of Freedom) C5-links parallel robot executing rectangular peg-in-hole insertions with weak tolerances. The experimental results demonstrate that the robot’s skill improves effectively and force control performances are good even if robot-environment interaction dynamic properties change.
doi_str_mv 10.20965/jrm.2006.p0529
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jrm_2006_p0529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jrm_2006_p0529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-843b47e41c859a81e0fe8b9210a91c641f35f75dadd2057269dca0672ce2413f3</originalsourceid><addsrcrecordid>eNot0E9LwzAABfAgCpa5s9d8gW752yTHUjYVhoLYc0jTFDO7pKRx4re3Tt_lvdM7_AC4x2hDkKr49phOy0LVZkKcqCtQYClpKRFT16BACvOSKkZuwXqej2gJZ0JRUYD22X0mM8K6N1P2ZwfraUrR2PdyGaO3JvsYYI7wNXYxw31M1sEmhpziCH2AJsA2fIT4FeAunH2K4eRCvgM3gxlnt_7vFWj3u7fmsTy8PDw19aG0RJJcSkY7JhzDVnJlJHZocLJTBCOjsK0YHigfBO9N3xPEBalUbw2qBLGOMEwHugLbv1-b4jwnN-gp-ZNJ3xojfYHRC4z-hdEXGPoDlgNXQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural Adaptive Approach-Application to Robot Force Control in an Unknown Environment</title><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Amirat, Yacine ; Djouani, Karim ; Kirad, Mohamed ; Saadia, Nadia</creator><creatorcontrib>Amirat, Yacine ; Djouani, Karim ; Kirad, Mohamed ; Saadia, Nadia ; Electronics and Computer Science Faculty, USTHB University, BP 32, Bab-ezzouar, El Alia, Alger Algeria ; LISSI - Université Paris 12, 120-122, rue Paul Armangot 94400 Vitry sur seine, France</creatorcontrib><description>This paper presents an effective neural adaptive approach for robot force control with changing/unknown robot-environment interaction dynamic properties. In this approach, a multilayered neural network controller is trained at first off line from data collected during contact motion in order to perform a smooth transition from free to contact motion. Then, an adaptive process is implemented online through a desired impedance reference model such that the closed-loop system maintains a good performance and compensates for uncertain/unknown dynamics of the robot-environment interaction. The effectiveness of the proposed approach has been evaluated for the force control of a 6 DOF (Degree Of Freedom) C5-links parallel robot executing rectangular peg-in-hole insertions with weak tolerances. The experimental results demonstrate that the robot’s skill improves effectively and force control performances are good even if robot-environment interaction dynamic properties change.</description><identifier>ISSN: 0915-3942</identifier><identifier>EISSN: 1883-8049</identifier><identifier>DOI: 10.20965/jrm.2006.p0529</identifier><language>eng</language><ispartof>Journal of robotics and mechatronics, 2006-10, Vol.18 (5), p.529-538</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-843b47e41c859a81e0fe8b9210a91c641f35f75dadd2057269dca0672ce2413f3</citedby><cites>FETCH-LOGICAL-c282t-843b47e41c859a81e0fe8b9210a91c641f35f75dadd2057269dca0672ce2413f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Amirat, Yacine</creatorcontrib><creatorcontrib>Djouani, Karim</creatorcontrib><creatorcontrib>Kirad, Mohamed</creatorcontrib><creatorcontrib>Saadia, Nadia</creatorcontrib><creatorcontrib>Electronics and Computer Science Faculty, USTHB University, BP 32, Bab-ezzouar, El Alia, Alger Algeria</creatorcontrib><creatorcontrib>LISSI - Université Paris 12, 120-122, rue Paul Armangot 94400 Vitry sur seine, France</creatorcontrib><title>Neural Adaptive Approach-Application to Robot Force Control in an Unknown Environment</title><title>Journal of robotics and mechatronics</title><description>This paper presents an effective neural adaptive approach for robot force control with changing/unknown robot-environment interaction dynamic properties. In this approach, a multilayered neural network controller is trained at first off line from data collected during contact motion in order to perform a smooth transition from free to contact motion. Then, an adaptive process is implemented online through a desired impedance reference model such that the closed-loop system maintains a good performance and compensates for uncertain/unknown dynamics of the robot-environment interaction. The effectiveness of the proposed approach has been evaluated for the force control of a 6 DOF (Degree Of Freedom) C5-links parallel robot executing rectangular peg-in-hole insertions with weak tolerances. The experimental results demonstrate that the robot’s skill improves effectively and force control performances are good even if robot-environment interaction dynamic properties change.</description><issn>0915-3942</issn><issn>1883-8049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNot0E9LwzAABfAgCpa5s9d8gW752yTHUjYVhoLYc0jTFDO7pKRx4re3Tt_lvdM7_AC4x2hDkKr49phOy0LVZkKcqCtQYClpKRFT16BACvOSKkZuwXqej2gJZ0JRUYD22X0mM8K6N1P2ZwfraUrR2PdyGaO3JvsYYI7wNXYxw31M1sEmhpziCH2AJsA2fIT4FeAunH2K4eRCvgM3gxlnt_7vFWj3u7fmsTy8PDw19aG0RJJcSkY7JhzDVnJlJHZocLJTBCOjsK0YHigfBO9N3xPEBalUbw2qBLGOMEwHugLbv1-b4jwnN-gp-ZNJ3xojfYHRC4z-hdEXGPoDlgNXQg</recordid><startdate>20061020</startdate><enddate>20061020</enddate><creator>Amirat, Yacine</creator><creator>Djouani, Karim</creator><creator>Kirad, Mohamed</creator><creator>Saadia, Nadia</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061020</creationdate><title>Neural Adaptive Approach-Application to Robot Force Control in an Unknown Environment</title><author>Amirat, Yacine ; Djouani, Karim ; Kirad, Mohamed ; Saadia, Nadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-843b47e41c859a81e0fe8b9210a91c641f35f75dadd2057269dca0672ce2413f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amirat, Yacine</creatorcontrib><creatorcontrib>Djouani, Karim</creatorcontrib><creatorcontrib>Kirad, Mohamed</creatorcontrib><creatorcontrib>Saadia, Nadia</creatorcontrib><creatorcontrib>Electronics and Computer Science Faculty, USTHB University, BP 32, Bab-ezzouar, El Alia, Alger Algeria</creatorcontrib><creatorcontrib>LISSI - Université Paris 12, 120-122, rue Paul Armangot 94400 Vitry sur seine, France</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of robotics and mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amirat, Yacine</au><au>Djouani, Karim</au><au>Kirad, Mohamed</au><au>Saadia, Nadia</au><aucorp>Electronics and Computer Science Faculty, USTHB University, BP 32, Bab-ezzouar, El Alia, Alger Algeria</aucorp><aucorp>LISSI - Université Paris 12, 120-122, rue Paul Armangot 94400 Vitry sur seine, France</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Adaptive Approach-Application to Robot Force Control in an Unknown Environment</atitle><jtitle>Journal of robotics and mechatronics</jtitle><date>2006-10-20</date><risdate>2006</risdate><volume>18</volume><issue>5</issue><spage>529</spage><epage>538</epage><pages>529-538</pages><issn>0915-3942</issn><eissn>1883-8049</eissn><abstract>This paper presents an effective neural adaptive approach for robot force control with changing/unknown robot-environment interaction dynamic properties. In this approach, a multilayered neural network controller is trained at first off line from data collected during contact motion in order to perform a smooth transition from free to contact motion. Then, an adaptive process is implemented online through a desired impedance reference model such that the closed-loop system maintains a good performance and compensates for uncertain/unknown dynamics of the robot-environment interaction. The effectiveness of the proposed approach has been evaluated for the force control of a 6 DOF (Degree Of Freedom) C5-links parallel robot executing rectangular peg-in-hole insertions with weak tolerances. The experimental results demonstrate that the robot’s skill improves effectively and force control performances are good even if robot-environment interaction dynamic properties change.</abstract><doi>10.20965/jrm.2006.p0529</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-3942
ispartof Journal of robotics and mechatronics, 2006-10, Vol.18 (5), p.529-538
issn 0915-3942
1883-8049
language eng
recordid cdi_crossref_primary_10_20965_jrm_2006_p0529
source Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals
title Neural Adaptive Approach-Application to Robot Force Control in an Unknown Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Adaptive%20Approach-Application%20to%20Robot%20Force%20Control%20in%20an%20Unknown%20Environment&rft.jtitle=Journal%20of%20robotics%20and%20mechatronics&rft.au=Amirat,%20Yacine&rft.aucorp=Electronics%20and%20Computer%20Science%20Faculty,%20USTHB%20University,%20BP%2032,%20Bab-ezzouar,%20El%20Alia,%20Alger%20Algeria&rft.date=2006-10-20&rft.volume=18&rft.issue=5&rft.spage=529&rft.epage=538&rft.pages=529-538&rft.issn=0915-3942&rft.eissn=1883-8049&rft_id=info:doi/10.20965/jrm.2006.p0529&rft_dat=%3Ccrossref%3E10_20965_jrm_2006_p0529%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true