Neural Adaptive Approach-Application to Robot Force Control in an Unknown Environment
This paper presents an effective neural adaptive approach for robot force control with changing/unknown robot-environment interaction dynamic properties. In this approach, a multilayered neural network controller is trained at first off line from data collected during contact motion in order to perf...
Gespeichert in:
Veröffentlicht in: | Journal of robotics and mechatronics 2006-10, Vol.18 (5), p.529-538 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an effective neural adaptive approach for robot force control with changing/unknown robot-environment interaction dynamic properties. In this approach, a multilayered neural network controller is trained at first off line from data collected during contact motion in order to perform a smooth transition from free to contact motion. Then, an adaptive process is implemented online through a desired impedance reference model such that the closed-loop system maintains a good performance and compensates for uncertain/unknown dynamics of the robot-environment interaction. The effectiveness of the proposed approach has been evaluated for the force control of a 6 DOF (Degree Of Freedom) C5-links parallel robot executing rectangular peg-in-hole insertions with weak tolerances. The experimental results demonstrate that the robot’s skill improves effectively and force control performances are good even if robot-environment interaction dynamic properties change. |
---|---|
ISSN: | 0915-3942 1883-8049 |
DOI: | 10.20965/jrm.2006.p0529 |