Temporal Changes of Magmas That Caused Lava-Dome Eruptions of Haruna Volcano in the Past 45,000 Years

We have studied four lava dome eruptions which occurred in 45–10 ka in Haruna volcano. Enclave parts (SiO 2 50.9–55.1 wt%) and host parts (SiO 2 59.5–64.5 wt%) in lava samples are all products of magma mixing. Characteristics of felsic endmember magmas are the same among four eruptions, while those...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of disaster research 2022-08, Vol.17 (5), p.694-715
Hauptverfasser: Suzuki, Yuki, Toeda, Yurika, Kimura, Shinya, Tanaka, Rei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have studied four lava dome eruptions which occurred in 45–10 ka in Haruna volcano. Enclave parts (SiO 2 50.9–55.1 wt%) and host parts (SiO 2 59.5–64.5 wt%) in lava samples are all products of magma mixing. Characteristics of felsic endmember magmas are the same among four eruptions, while those of mafic endmember magmas vary slightly in terms of bulk composition. The felsic magma had SiO 2 ≥ 63 wt% and a temperature of 760°C–860°C, and contained ≥60 vol% of orthopyroxene, amphibole, plagioclase, quartz, and Fe-Ti oxides. The mafic magma had SiO 2 48–51 wt% and contained 0–10 vol% of olivine. The enclave magmas resulted from higher contribution of mafic magma and thus had higher temperature than the host magmas, which led to formation of enclave upon their interaction. Similarities of endmember magmas between the four eruptions and the Futatsudake-Ikaho eruption (late 6th–beginning of 7th century) suggest structure of magma plumbing system and eruption triggering process have been basically unchanged in past 45,000 years. The felsic magmas were commonly mush-like and had high viscosity. Therefore, generation of low-viscosity magma through magma mixing, and vent-opening by the low-viscosity magma are mandatory for eruption to initiate. Unlike the Futatsudake-Ikaho eruption, the older four eruptions did not proceed to eruptive phase where felsic magma erupts without mixing and explosively. The absence of quartz only in felsic magma of Futatsudake-Ikaho eruption is consistent with its less-evolved bulk composition and slightly higher temperature than those of older four eruptions.
ISSN:1881-2473
1883-8030
DOI:10.20965/jdr.2022.p0694