Three-Dimensional Seismic Velocity Structure Beneath Japanese Islands and Surroundings Based on NIED Seismic Networks Using both Inland and Offshore Events

Tomographic analysis of the seismic velocity structure beneath oceans has always been difficult because offshore events determined by onshore seismic networks have large uncertainties in depth. In order to use reliable event locations for our computations, we have developed a method to use the hypoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of disaster research 2017-10, Vol.12 (5), p.844-857
Hauptverfasser: Matsubara, Makoto, Sato, Hiroshi, Uehira, Kenji, Mochizuki, Masashi, Kanazawa, Toshihiko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tomographic analysis of the seismic velocity structure beneath oceans has always been difficult because offshore events determined by onshore seismic networks have large uncertainties in depth. In order to use reliable event locations for our computations, we have developed a method to use the hypocentral depths determined by the NIED F-net with moment tensor solutions using long-period (20-50 s) waves from offshore events away from onshore seismic networks. We applied seismic tomographic method to events occurring between the years 2000 and 2015 to generate a tomographic image of the Japanese Islands and the surrounding using travel time data picked by the NIED Hi-net, hypocenteral information for onshore earthquakes from the Hi-net, and hypocenter information for offshore events from the F-net. The seismic velocity structure at depths of 30-50 km beneath the Pacific Ocean off the east coast of northeastern Japan and onshore Japan was clearly imaged using both onshore and offshore event date. The boundary between high and low P-wave velocities (Vp) is clearly seen at the Median Tectonic Line beneath southwestern Japan at depths of 10 and 20 km. We discuss how the high-Vp lower crust and low-Vp upper crust beneath central Japan and towards the Sea of Japan are responsible for the failed rift structures formed during the opening of the Sea of Japan. Due to consequent shortening, the crustal deformation has been concentrated along the failed rift zone. Resolution of shallow structures beneath the ocean is investigated using S-net data, confirming the possibility of imaging depths of 5-20 km. In future studies, application of S-net data will be useful in evaluating whether the failed rift structure, formed during the late Cretaceous to early Tertiary, continues towards the shallow regions beneath the Pacific Ocean.
ISSN:1881-2473
1883-8030
DOI:10.20965/jdr.2017.p0844