Approach to Environmental, Health and Safety Issues of Nanotechnology in Japan
In environmental, health, and safety issues of nanotechnology (nanoEHS), at present, risk assessment and management of nanomaterials to protect workers, consumers, and the environment is the most urgent. Workers have the highest possibility of being exposed to nanomaterials in workplaces, where nano...
Gespeichert in:
Veröffentlicht in: | Journal of disaster research 2011-10, Vol.6 (5), p.506-513 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In environmental, health, and safety issues of nanotechnology (nanoEHS), at present, risk assessment and management of nanomaterials to protect workers, consumers, and the environment is the most urgent. Workers have the highest possibility of being exposed to nanomaterials in workplaces, where nanomaterials may be inhaled or enter the body through dermal exposure. Several kinds of in-vivo tests have been done to assess the hazards of nanomaterials, mainly in terms of immunity response and carcinogenicity. Most advanced countries agree that it is important to manage the risks of nanomaterials with using the existing framework for chemical substances as much as possible to minimize risks, product of hazard and exposure. Research papers on the hazards of nanomaterials have been increasing, but there have been comparatively little scientific data related to exposuremeasurement. The Japanese government and national research institutes have been proactively committed to this issue since 2004. In addition to supporting several domestic projects, the Japanese government proactively joined international bodies such as the OECD Working Party on Manufactured Nanomaterials and ISO TC-229. Still, much more scientific data in appropriate studies and more discussion by appropriate participants are needed although funding is limited. To improve the situation, proposals have included (1) promoting basic research on nanoEHS, (2) increasing opportunities for scientific discussion on nanoEHS, (3) working continuously to construct and maintain databases on nanoEHS, (4) promoting the involvement of multistakeholders in nanoEHS, and (5) having ministries working cooperatively and efficiently on nanoEHS. |
---|---|
ISSN: | 1881-2473 1883-8030 |
DOI: | 10.20965/jdr.2011.p0506 |