Tsunami Forces and Effects on Structures

The 2004 Indian Ocean Tsunami claimed more than 220,000 lives. It was a low-probability high-consequence event. A similar disaster could strike elsewhere, particularly in the Pacific but also in Caribbean, Atlantic, and Mediterranean regions. Unlike in seismic ground shaking, there is usually a shor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of disaster research 2009-12, Vol.4 (6), p.375-376
Hauptverfasser: Yeh, Harry, Shuto, Nobuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 2004 Indian Ocean Tsunami claimed more than 220,000 lives. It was a low-probability high-consequence event. A similar disaster could strike elsewhere, particularly in the Pacific but also in Caribbean, Atlantic, and Mediterranean regions. Unlike in seismic ground shaking, there is usually a short lead-time precedes tsunami attack: from a few minutes for a local source to several hours for a distant source. Because mega-tsunamis are rare and because forewarning of these events is possible, the primary mitigation tactic to date has been evacuation. Hence, most efforts have focused on the development of effective warning systems, inundation maps, and tsunami awareness. This strategy makes sense from the standpoint of saving human lives. However, it does not address the devastating damage to buildings and critical coastal infrastructure, such as major coastal bridges, oil and LNG storage facilities, power plants, and ports and harbors. Failure in critical infrastructure creates enormous economic setbacks and collateral damage. The accelerating construction of critical infrastructure in the coastal zone demands a better understanding of design methodology in building tsunamiresistant structures. In some coastal areas such as low-elevation coastal spits or plains, evacuating people to higher ground may be impractical because they have no time to reach safety. In these situations, the only feasible way to minimize human casualties is to evacuate people to the upper floors of tsunami-resistant buildings. Such buildings must be designed and constructed to survive strong seismic ground shaking and subsequent tsunami impacts. The primary causes of structural failure subject to tsunami attack can be categorized into three groups: 1) hydrodynamic force, 2) impact force by water-born objects, and 3) scour and foundation failure. Tsunami behaviors are quite distinct, however, from other coastal hazards such as storm waves; hence the effects cannot be inferred from common knowledge or intuition. Recent research has addressed tsunami forces acting on coastal structures to develop appropriate design guidelines, and mechanisms leading to tsunamigenerated scour and foundation failures. This special issue is a compilation of 14 papers addressing tsunami effects on buildings and infrastructure. The four main groupings begin with two papers on tsunami force acting on vertical walls. Arikawa experimentally investigates the structural performance of wooden and concrete walls u
ISSN:1881-2473
1883-8030
DOI:10.20965/jdr.2009.p0375