Optimization of Orthogonal MSK Waveforms for Active Sonar Using Genetic Algorithm
In order to solve the high peak to average power ratio (PAPR) problem of pseudo random code phase modulation (PRCPM) signals, minimum shift keying (MSK) modulation waveforms with constant envelope were introduced into underwater detection. Genetic algorithm (GA) was proposed to optimize pseudo rando...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2019-01, Vol.23 (1), p.84-90 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to solve the high peak to average power ratio (PAPR) problem of pseudo random code phase modulation (PRCPM) signals, minimum shift keying (MSK) modulation waveforms with constant envelope were introduced into underwater detection. Genetic algorithm (GA) was proposed to optimize pseudo random binary codes used for MSK waveforms, in order to design sonar waveforms with various performances. After MSK complex envelope signal was obtained by theoretical analysis, the optimizing objective functions for a single waveform and a group of waveforms were presented. The optimized single waveform with low autocorrelation sidelobe values can reduce false alarm number and the difficulty of target decision. When multiple sonar systems work as a team, the optimized group of orthogonal waveforms with low autocorrelation sidelobe values and cross-correlation values can alleviate interferences between each other. In the simulation, the correlation performances of a single waveform and a group of orthogonal waveforms were presented, and ambiguity function showed that the designed waveforms had good velocity and distance resolution, which means that the optimized MSK waveforms are suitable for underwater detection. |
---|---|
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2019.p0084 |