Design and Experimental Verification of a Wheeled Mobile System with a Spring-Based Regenerative Brake
In human-operated mechanical systems such as automobiles, electric bicycles, and electric wheelchairs, energy saving is an important criterion. Hybrid systems consisting of combustion engines and electric motors have found successful applications in automobiles. However, it is difficult to apply thi...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2017-07, Vol.21 (4), p.751-759 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In human-operated mechanical systems such as automobiles, electric bicycles, and electric wheelchairs, energy saving is an important criterion. Hybrid systems consisting of combustion engines and electric motors have found successful applications in automobiles. However, it is difficult to apply this type of hybrid system to personal mobilities and industrial machines in a factory, as there is a requirement to reduce their energy consumption owing to recent environmental and energy resource problems. Therefore, a previous study has focused on the use of a mechanical spring as a regenerative brake in a hybrid bicycle. This study, however, presents a new type of hybrid system that includes the use of a mechanical spring. An experimental wheeled mobile system is designed, and its effectiveness is confirmed through comparative experiments in which a reduction of more than 30% in the consumed energy is achieved in acceleration periods as compared to a conventional system. |
---|---|
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2017.p0751 |