Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework
Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2013-03, Vol.17 (2), p.312-317 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | 2 |
container_start_page | 312 |
container_title | Journal of advanced computational intelligence and intelligent informatics |
container_volume | 17 |
creator | Honda, Katsuhiro Yamamoto, Takeshi Notsu, Akira Ichihashi, Hidetomo |
description | Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering model is applied in conjunction with a robust measure of alternative
c
-means. Non-Euclidean data matrices are handled with β-spread transformation in a manner similar to that of NERF
c
-Means. In several experiments, robust feature maps derived by the robust clustering model are compared with feature maps given by the conventional clustering model and Multi-Dimensional Scaling (MDS). |
doi_str_mv | 10.20965/jaciii.2013.p0312 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_20965_jaciii_2013_p0312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_20965_jaciii_2013_p0312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-ee33ddba81a2ab0f80c3f1340c4f81f06747ce4b336a15d2a439b9811b710bc33</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOHRfwKd8gc6kN2uzR62rClNhqK_l5p9kdu1IWmT79MbNp3POPXDg_gi54WyWs0Uxv92g9t6nwGG2Y8DzMzLhUkImGRfnyYOALJXskkxj3DCWfF4wwSfEf_o4YusPOPi-o72jr32XLUfdemOxo2vbHhts6QMOSNWerns1xoGufGcx0Ho8HPa0atPJBt990XuM1tC0VVcvxtA64Nb-9OH7mlw4bKOd_usV-aiX79VTtnp7fK7uVpmGeTlk1gIYo1ByzFExJ5kGlx5gWjjJHStKUWorFECBfG5yFLBQC8m5KjlTGuCK5KddHfoYg3XNLvgthn3DWXPk1Zx4NX-8miMv-AUfnGCS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><creator>Honda, Katsuhiro ; Yamamoto, Takeshi ; Notsu, Akira ; Ichihashi, Hidetomo</creator><creatorcontrib>Honda, Katsuhiro ; Yamamoto, Takeshi ; Notsu, Akira ; Ichihashi, Hidetomo ; Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan</creatorcontrib><description>Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering model is applied in conjunction with a robust measure of alternative
c
-means. Non-Euclidean data matrices are handled with β-spread transformation in a manner similar to that of NERF
c
-Means. In several experiments, robust feature maps derived by the robust clustering model are compared with feature maps given by the conventional clustering model and Multi-Dimensional Scaling (MDS).</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2013.p0312</identifier><language>eng</language><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2013-03, Vol.17 (2), p.312-317</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-ee33ddba81a2ab0f80c3f1340c4f81f06747ce4b336a15d2a439b9811b710bc33</citedby><cites>FETCH-LOGICAL-c357t-ee33ddba81a2ab0f80c3f1340c4f81f06747ce4b336a15d2a439b9811b710bc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Honda, Katsuhiro</creatorcontrib><creatorcontrib>Yamamoto, Takeshi</creatorcontrib><creatorcontrib>Notsu, Akira</creatorcontrib><creatorcontrib>Ichihashi, Hidetomo</creatorcontrib><creatorcontrib>Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan</creatorcontrib><title>Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering model is applied in conjunction with a robust measure of alternative
c
-means. Non-Euclidean data matrices are handled with β-spread transformation in a manner similar to that of NERF
c
-Means. In several experiments, robust feature maps derived by the robust clustering model are compared with feature maps given by the conventional clustering model and Multi-Dimensional Scaling (MDS).</description><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkF9LwzAUxYMoOHRfwKd8gc6kN2uzR62rClNhqK_l5p9kdu1IWmT79MbNp3POPXDg_gi54WyWs0Uxv92g9t6nwGG2Y8DzMzLhUkImGRfnyYOALJXskkxj3DCWfF4wwSfEf_o4YusPOPi-o72jr32XLUfdemOxo2vbHhts6QMOSNWerns1xoGufGcx0Ho8HPa0atPJBt990XuM1tC0VVcvxtA64Nb-9OH7mlw4bKOd_usV-aiX79VTtnp7fK7uVpmGeTlk1gIYo1ByzFExJ5kGlx5gWjjJHStKUWorFECBfG5yFLBQC8m5KjlTGuCK5KddHfoYg3XNLvgthn3DWXPk1Zx4NX-8miMv-AUfnGCS</recordid><startdate>20130320</startdate><enddate>20130320</enddate><creator>Honda, Katsuhiro</creator><creator>Yamamoto, Takeshi</creator><creator>Notsu, Akira</creator><creator>Ichihashi, Hidetomo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130320</creationdate><title>Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework</title><author>Honda, Katsuhiro ; Yamamoto, Takeshi ; Notsu, Akira ; Ichihashi, Hidetomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-ee33ddba81a2ab0f80c3f1340c4f81f06747ce4b336a15d2a439b9811b710bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honda, Katsuhiro</creatorcontrib><creatorcontrib>Yamamoto, Takeshi</creatorcontrib><creatorcontrib>Notsu, Akira</creatorcontrib><creatorcontrib>Ichihashi, Hidetomo</creatorcontrib><creatorcontrib>Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honda, Katsuhiro</au><au>Yamamoto, Takeshi</au><au>Notsu, Akira</au><au>Ichihashi, Hidetomo</au><aucorp>Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2013-03-20</date><risdate>2013</risdate><volume>17</volume><issue>2</issue><spage>312</spage><epage>317</epage><pages>312-317</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering model is applied in conjunction with a robust measure of alternative
c
-means. Non-Euclidean data matrices are handled with β-spread transformation in a manner similar to that of NERF
c
-Means. In several experiments, robust feature maps derived by the robust clustering model are compared with feature maps given by the conventional clustering model and Multi-Dimensional Scaling (MDS).</abstract><doi>10.20965/jaciii.2013.p0312</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-0130 |
ispartof | Journal of advanced computational intelligence and intelligent informatics, 2013-03, Vol.17 (2), p.312-317 |
issn | 1343-0130 1883-8014 |
language | eng |
recordid | cdi_crossref_primary_10_20965_jaciii_2013_p0312 |
source | Open Access: DOAJ - Directory of Open Access Journals |
title | Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20Non-Euclidean%20Relational%20Data%20by%20Robust%20Linear%20Fuzzy%20Clustering%20Based%20on%20FCMdd%20Framework&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Honda,%20Katsuhiro&rft.aucorp=Graduate%20School%20of%20Engineering,%20Osaka%20Prefecture%20University,%201-1%20Gakuen-cho,%20Naka-ku,%20Sakai,%20Osaka%20599-8531,%20Japan&rft.date=2013-03-20&rft.volume=17&rft.issue=2&rft.spage=312&rft.epage=317&rft.pages=312-317&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2013.p0312&rft_dat=%3Ccrossref%3E10_20965_jaciii_2013_p0312%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |