Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework
Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2013-03, Vol.17 (2), p.312-317 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering model is applied in conjunction with a robust measure of alternative
c
-means. Non-Euclidean data matrices are handled with β-spread transformation in a manner similar to that of NERF
c
-Means. In several experiments, robust feature maps derived by the robust clustering model are compared with feature maps given by the conventional clustering model and Multi-Dimensional Scaling (MDS). |
---|---|
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2013.p0312 |