Visualization of Non-Euclidean Relational Data by Robust Linear Fuzzy Clustering Based on FCMdd Framework

Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2013-03, Vol.17 (2), p.312-317
Hauptverfasser: Honda, Katsuhiro, Yamamoto, Takeshi, Notsu, Akira, Ichihashi, Hidetomo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visualization is a fundamental approach for revealing intrinsic structures in multidimensional observation. This paper considers visualization of non-Euclidean relational data by extracting local linear substructures. In order to extract robust linear clusters, an FCMdd-based linear fuzzy clustering model is applied in conjunction with a robust measure of alternative c -means. Non-Euclidean data matrices are handled with β-spread transformation in a manner similar to that of NERF c -Means. In several experiments, robust feature maps derived by the robust clustering model are compared with feature maps given by the conventional clustering model and Multi-Dimensional Scaling (MDS).
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2013.p0312