Effect of Carbon Content and Microstructure on the Diffusion of Hydrogen in Low Carbon Steels
In this work, the electrochemical permeation technique proposed in the ASTM-G148-97 Ed 2011 standard was used to determine the maximum oxidation current density, imax; breakthrough time; tb, effective hydrogen diffusion coefficient, Deff; and surface hydrogen concentration, CH0, for several API 5L s...
Gespeichert in:
Veröffentlicht in: | International journal of electrochemical science 2020-11, Vol.15 (11), p.11606-11622 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the electrochemical permeation technique proposed in the ASTM-G148-97 Ed 2011 standard was used to determine the maximum oxidation current density, imax; breakthrough time; tb, effective hydrogen diffusion coefficient, Deff; and surface hydrogen concentration, CH0, for several API 5L steels. The results show that steels with a carbon content of less than or equal to 0.052 %wt and a ferritic-bainitic microstructure have higher Deff and imax values than steels with a higher carbon content and a ferritic-pearlitic microstructure, while the CH0 and tb parameters show a clear tendency to decrease when the microstructure changes from ferritic-pearlitic to ferritic-bainitic. The Deff values obtained in this work are consistent with published data, both in terms of their magnitude and in relation to the effects of carbon content and microstructure. |
---|---|
ISSN: | 1452-3981 1452-3981 |
DOI: | 10.20964/2020.11.39 |