Coproduction of Extended Spectrum, AmpC and Metallo β- Lactamases in Pseudomonas aeruginosa Isolates from a Super Speciality Center
Pseudomonas aeruginosa (P. aeruginosa) is one of the leading causes of hospital as well as community acquired infections. They’re strenuous to treat as most of isolates exhibit various degrees of beta- lactamase mediated resistance to majority of the beta-lactam antibiotics. Single isolate can expre...
Gespeichert in:
Veröffentlicht in: | International journal of current microbiology and applied sciences 2021-10, Vol.10 (10), p.176-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pseudomonas aeruginosa (P. aeruginosa) is one of the leading causes of hospital as well as community acquired infections. They’re strenuous to treat as most of isolates exhibit various degrees of beta- lactamase mediated resistance to majority of the beta-lactam antibiotics. Single isolate can express multiple β- lactamase enzymes, further limiting the treatment options. Therefore, this study was outlined to research the coexistence of various beta-lactamase enzymes in clinical isolates of P. aeruginosa. The aim of the study was to detect the co-prevalence of Extended Spectrum Beta lactmases (ESBL), AmpC and Metallo β-Lactamases (MBL) in Pseudomonas aeruginosa isolates from a superspeciality center. Fifty clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta- lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Discernment of AmpC beta-lactamase was performed by disk antagonism while ESBL detection was done by the combined disk diffusion method as per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Eleven of 50 (22%) isolates were confirmed to be positive for AmpC and Extended spectrum beta lactamases. Co-production of AmpC along side ESBL and MBL was reported in 12 % isolates. The study shows the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Consequently, formulation of a correct antibiotic policy and taking measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to mitigate the emergence of this multiple beta-lactamase producing pathogens. |
---|---|
ISSN: | 2319-7692 2319-7706 |
DOI: | 10.20546/ijcmas.2021.1010.020 |