Construction of a global solution for the one dimensional singularly-perturbed boundary value problem

We consider an approximate solution for the one--dimensional semilinear singularly--perturbed boundary value problem, using the previously obtained numerical values of the boundary value problem in the mesh points and the representation of the exact solution using Green's function. We present a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Modern Methods in Numerical Mathematics 2017-07, Vol.8 (1-2), p.52
Hauptverfasser: Karasuljic, Samir, Duvnjakovic, Enes, Pasic, Vedad, Barakovic, Elvis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an approximate solution for the one--dimensional semilinear singularly--perturbed boundary value problem, using the previously obtained numerical values of the boundary value problem in the mesh points and the representation of the exact solution using Green's function. We present an \(\varepsilon\)--uniform convergence of such gained the approximate solutions, in the maximum norm of the order \(\mathcal{O}\left(N^{-1}\right)\) on the observed domain. After that, the constructed approximate solution is repaired and we obtain a solution, which also has \(\varepsilon\)--uniform convergence, but now of order \(\mathcal{O}\left(\ln^2N/N^2\right)\) on \([0,1]\). In the end a numerical experiment is presented to confirm previously shown theoretical results.
ISSN:2090-8296
2090-4770
DOI:10.20454/jmmnm.2017.1275