МОДЕЛЬ ПЕРЕХОДНЫХ ПРОЦЕССОВ В СКВАЖИНЕ С ЧАСТОТНО-РЕГУЛИРУЕМЫМ ЭЛЕКТРОЦЕНТРОБЕЖНЫМ НАСОСОМ
Актуальность исследования связана с проблемой эффективности контроля динамических режимов эксплуатации скважин, оснащённых частотно-регулируемым электроцентробежным насосом, при создании и вычислительной реализации моделей скважинной системы, работающих в режиме реального времени. Комплексная функци...
Gespeichert in:
Veröffentlicht in: | Izvestiâ Tomskogo politehničeskogo universiteta. Inžiniring georesursov 2019-01, Vol.330 (1), p.110-120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Актуальность исследования связана с проблемой эффективности контроля динамических режимов эксплуатации скважин, оснащённых частотно-регулируемым электроцентробежным насосом, при создании и вычислительной реализации моделей скважинной системы, работающих в режиме реального времени. Комплексная функциональность представленного в статье решения позволяет воспроизводить реальные формы поведения системы в переходных и равновесных режимах работы в условиях действий осложняющих факторов, что и является основой корректного параметрического оценивания с использованием данных натурного контроля режимных состояний. Цель: построение комплексной гидродинамической модели типа «пласт–скважина–электронасос–устье», ориентированной на задачи диспетчерского контроля осложнённых режимов эксплуатации систем в условиях реального времени. Методы: материального баланса, гидроупругой линейной фильтрации, гидростатики, линеаризованной кинетики потерь на трение, численного моделирования дифференциальных уравнений. Результаты. Сконструированная и численно реализованная гидродинамическая модель скважины с электроцентробежным насосом воспроизводит целостную, логически обусловленную картину реального поведения системы в переходных и равновесных режимах эксплуатации в условиях действия осложняющих факторов. Упрощенный характер описания образующих компонент и связей позволяет реализовывать и применять функционально обновлённые инструменты контроля по месту в рамках информационных ресурсов диспетчерских служб предприятия. Выводы. Комплексность и факторная полнота описания моделей являются основой конструирования алгоритмов и регламентов параметрической идентификации и последующего опознавания видов и уровней осложнений по данным реальной эксплуатации. Реализация вычислительного процесса в темпе с динамикой обновления данных контроля состояний и возмущений позволит использовать модель как виртуальный измеритель расширенного вектора состояния скважины в переходных и установившихся режимах работы. |
---|---|
ISSN: | 2500-1019 2413-1830 |
DOI: | 10.18799/24131830/2019/1/55 |