Protective Effects of Black Tea (Camellia sinensis) Extract on Endosulfan Induced Oxidative Stress, Inflammation and Hepatic Damage in Rats
With the agricultural expansion the use of pesticides is increasing rapidly in developing countries. Endosulfan, an organochlorine insecticide, is a broadspectrum effective compound used in wide variety of agricultural crops but known to generate free radicals in the liver and caused hepatotoxicity....
Gespeichert in:
Veröffentlicht in: | Toxicology international 2022-12, p.353-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the agricultural expansion the use of pesticides is increasing rapidly in developing countries. Endosulfan, an organochlorine insecticide, is a broadspectrum effective compound used in wide variety of agricultural crops but known to generate free radicals in the liver and caused hepatotoxicity. Thus, we considered it necessary to explore the protective effect of black tea extract against endusulfan mediated hepatotoxicity. 18 male albino Wistar rats were divided into 3 groups: Control, endosulfan treated (5mg/kg body weight/day) and endosulfan+black tea extract treated (1ml of 2.5gm%/100gm of body weight/day). After 30 days of treatment period, all the animals were sacrificed, and blood and liver tissue were collected. Serum and tissue cholesterol, serum liver function parameters, liver oxidative stress parameters and serum proinflammatory cytokines were measured. Liver sections were stained with haematoxylene and eosine and histological evaluation was done. Results revealed that endusulfan induces oxidative stress in liver by altering oxidant/antioxidant balance, and causes inflammation resulting into hepatic damage. Black tea extract supplementation shows considerable protection against endosulfan mediated changes in liver. Thus, black tea extract exerts ameliorative effect against endosulfan mediated liver toxicity. |
---|---|
ISSN: | 0971-6580 0976-5131 |
DOI: | 10.18311/ti/2022/v29i3/29822 |