Ince-Gaussian laser beams as superposition of Hermite-Gaussian or Laguerre-Gaussian beams
We obtain explicit analytic expressions for the Ince-Gaussian (IG) beams for several first indices p = 3, 4, 5, 6. Earlier, explicit expressions have been derived for amplitudes of the IG beams with p = 0, 1, 2 and without regard for the ellipticity parameter. Here, we give expressions for the ampli...
Gespeichert in:
Veröffentlicht in: | Kompʹûternaâ optika 2024-08, Vol.48 (4), p.501-510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; rus |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain explicit analytic expressions for the Ince-Gaussian (IG) beams for several first indices p = 3, 4, 5, 6. Earlier, explicit expressions have been derived for amplitudes of the IG beams with p = 0, 1, 2 and without regard for the ellipticity parameter. Here, we give expressions for the amplitudes of 24 IG beams written as superpositions of the Laguerre-Gaussian (LG) or Hermite-Gaussian (HG) beams, with the superposition coefficients explicitly depending on the ellipticity parameter. Simultaneously expressing the IG modes both via the LG and HG modes allows easily obtaining the IG modes in the extreme cases when the ellipticity parameter is zero or infinite. Explicit dependence of the obtained expressions for the IG modes on the ellipticity allows the intensity pattern at the beam cross-section to be varied by continuously varying the parameter value. For the first time, intensity distributions are obtained for the IG beams with negative ellipticity parameter. |
---|---|
ISSN: | 0134-2452 2412-6179 |
DOI: | 10.18287/2412-6179-CO-1466 |