Analysis of wear of tools made of 1.2344 steel and MP159 alloy in the process of friction stir welding (FSW) of 7075 T6 aluminium alloy sheet metal

The study presents an analysis of wear of tools made of 1.2344 steel and MP159 alloy for the process of obtaining an overlap joint in 1.0 mm and 0.8 mm sheet metal made of 7075 T6 aluminum alloy using friction stir welding (FSW) technology. Tool geometry was designed at the Czestochowa University of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Eksploatacja i niezawodność 2019-01, Vol.21 (1), p.54-59
Hauptverfasser: Więckowski, Wojciech, Burek, Rafał, Lacki, Piotr, Łogin, Waldemar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study presents an analysis of wear of tools made of 1.2344 steel and MP159 alloy for the process of obtaining an overlap joint in 1.0 mm and 0.8 mm sheet metal made of 7075 T6 aluminum alloy using friction stir welding (FSW) technology. Tool geometry was designed at the Czestochowa University of Technology. Evaluation of tool wear was conducted based on the measurements of geometry of working area of tools by means of a multisensory meter system and based on the assessment of the working area by means of a stereoscope after individual stages of wear tests. Furthermore, based on the results of a static tensile strength test and metallographic examinations of the specimens sampled from the joints obtained during tool wear tests, the effect of the degree of tool wear on joint quality was also evaluated. Analysis of the results revealed that both the tool made of 1.2344 steel and that made of MP159 alloy were substantially worn, increasing the risk of further use of the tools for the joint material (7075-T6) after obtaining the joint with length of 200m, which suggests their low durability. Furthermore, modification of tool geometry caused by wear led to insignificant improvements in joint strength. Therefore, the results of wear measurement set directions for further modification of tool geometry, also due to the fact that despite a substantial wear, the tools continued to yield high-quality joints without defects. As demonstrated in the study, the type of tool material does not only impact on tool life but also, as it was the case in their geometry, has a significant effect on the quality of obtained joints. Although the tool made of MP159 alloy was worn more than the tool made of 1.2344 steel, it allowed for obtaining the joints with substantially better strength parameters.
ISSN:1507-2711
2956-3860
DOI:10.17531/ein.2019.1.7