Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application
Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposit...
Gespeichert in:
Veröffentlicht in: | Eksploatacja i niezawodność 2024-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Eksploatacja i niezawodność |
container_volume | |
creator | Zhu, Jing Li, Ou Chen, Minghui Hu, Bingbing Ma, EnHui |
description | Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively. |
doi_str_mv | 10.17531/ein/194673 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_17531_ein_194673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17531_ein_194673</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_17531_ein_1946733</originalsourceid><addsrcrecordid>eNqVz7tOxDAQQFELgUQEW_ED06OwnmSTkBqBqBG9NVlPwgivHXkMiL_nWdBS3eY2x5gLtFc4dC1uWeIWx10_tEemasaur9vr3h6bCjs71M2AeGo2qjJZ2_S4GxErww8pBIkLTEz5qzO9hAJeaIlJReHA5Sl5mEjZQ4pAntYirwwqS6Tw54xc3lJ-BooepCjQugbZU5EUz83JTEF589szc3l3-3hzX-9zUs08uzXLgfK7Q-u-Me4T434w7f_uD_PoUt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Jing ; Li, Ou ; Chen, Minghui ; Hu, Bingbing ; Ma, EnHui</creator><creatorcontrib>Zhu, Jing ; Li, Ou ; Chen, Minghui ; Hu, Bingbing ; Ma, EnHui</creatorcontrib><description>Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.</description><identifier>ISSN: 1507-2711</identifier><identifier>EISSN: 2956-3860</identifier><identifier>DOI: 10.17531/ein/194673</identifier><language>eng</language><ispartof>Eksploatacja i niezawodność, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3146-875X ; 0000-0001-6268-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27915,27916</link.rule.ids></links><search><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Li, Ou</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Hu, Bingbing</creatorcontrib><creatorcontrib>Ma, EnHui</creatorcontrib><title>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</title><title>Eksploatacja i niezawodność</title><description>Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.</description><issn>1507-2711</issn><issn>2956-3860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVz7tOxDAQQFELgUQEW_ED06OwnmSTkBqBqBG9NVlPwgivHXkMiL_nWdBS3eY2x5gLtFc4dC1uWeIWx10_tEemasaur9vr3h6bCjs71M2AeGo2qjJZ2_S4GxErww8pBIkLTEz5qzO9hAJeaIlJReHA5Sl5mEjZQ4pAntYirwwqS6Tw54xc3lJ-BooepCjQugbZU5EUz83JTEF589szc3l3-3hzX-9zUs08uzXLgfK7Q-u-Me4T434w7f_uD_PoUt0</recordid><startdate>20241019</startdate><enddate>20241019</enddate><creator>Zhu, Jing</creator><creator>Li, Ou</creator><creator>Chen, Minghui</creator><creator>Hu, Bingbing</creator><creator>Ma, EnHui</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3146-875X</orcidid><orcidid>https://orcid.org/0000-0001-6268-6982</orcidid></search><sort><creationdate>20241019</creationdate><title>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</title><author>Zhu, Jing ; Li, Ou ; Chen, Minghui ; Hu, Bingbing ; Ma, EnHui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_17531_ein_1946733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Li, Ou</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Hu, Bingbing</creatorcontrib><creatorcontrib>Ma, EnHui</creatorcontrib><collection>CrossRef</collection><jtitle>Eksploatacja i niezawodność</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jing</au><au>Li, Ou</au><au>Chen, Minghui</au><au>Hu, Bingbing</au><au>Ma, EnHui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</atitle><jtitle>Eksploatacja i niezawodność</jtitle><date>2024-10-19</date><risdate>2024</risdate><issn>1507-2711</issn><eissn>2956-3860</eissn><abstract>Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.</abstract><doi>10.17531/ein/194673</doi><orcidid>https://orcid.org/0000-0003-3146-875X</orcidid><orcidid>https://orcid.org/0000-0001-6268-6982</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1507-2711 |
ispartof | Eksploatacja i niezawodność, 2024-10 |
issn | 1507-2711 2956-3860 |
language | eng |
recordid | cdi_crossref_primary_10_17531_ein_194673 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20bearing%20fault%20diagnosis%20method%20based%20on%20adaptive%20signal%20diagnosis%20network%20and%20its%20application&rft.jtitle=Eksploatacja%20i%20niezawodno%C5%9B%C4%87&rft.au=Zhu,%20Jing&rft.date=2024-10-19&rft.issn=1507-2711&rft.eissn=2956-3860&rft_id=info:doi/10.17531/ein/194673&rft_dat=%3Ccrossref%3E10_17531_ein_194673%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |