Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application

Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Eksploatacja i niezawodność 2024-10
Hauptverfasser: Zhu, Jing, Li, Ou, Chen, Minghui, Hu, Bingbing, Ma, EnHui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Eksploatacja i niezawodność
container_volume
creator Zhu, Jing
Li, Ou
Chen, Minghui
Hu, Bingbing
Ma, EnHui
description Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.
doi_str_mv 10.17531/ein/194673
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_17531_ein_194673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_17531_ein_194673</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_17531_ein_1946733</originalsourceid><addsrcrecordid>eNqVz7tOxDAQQFELgUQEW_ED06OwnmSTkBqBqBG9NVlPwgivHXkMiL_nWdBS3eY2x5gLtFc4dC1uWeIWx10_tEemasaur9vr3h6bCjs71M2AeGo2qjJZ2_S4GxErww8pBIkLTEz5qzO9hAJeaIlJReHA5Sl5mEjZQ4pAntYirwwqS6Tw54xc3lJ-BooepCjQugbZU5EUz83JTEF589szc3l3-3hzX-9zUs08uzXLgfK7Q-u-Me4T434w7f_uD_PoUt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Jing ; Li, Ou ; Chen, Minghui ; Hu, Bingbing ; Ma, EnHui</creator><creatorcontrib>Zhu, Jing ; Li, Ou ; Chen, Minghui ; Hu, Bingbing ; Ma, EnHui</creatorcontrib><description>Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.</description><identifier>ISSN: 1507-2711</identifier><identifier>EISSN: 2956-3860</identifier><identifier>DOI: 10.17531/ein/194673</identifier><language>eng</language><ispartof>Eksploatacja i niezawodność, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3146-875X ; 0000-0001-6268-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27915,27916</link.rule.ids></links><search><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Li, Ou</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Hu, Bingbing</creatorcontrib><creatorcontrib>Ma, EnHui</creatorcontrib><title>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</title><title>Eksploatacja i niezawodność</title><description>Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.</description><issn>1507-2711</issn><issn>2956-3860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVz7tOxDAQQFELgUQEW_ED06OwnmSTkBqBqBG9NVlPwgivHXkMiL_nWdBS3eY2x5gLtFc4dC1uWeIWx10_tEemasaur9vr3h6bCjs71M2AeGo2qjJZ2_S4GxErww8pBIkLTEz5qzO9hAJeaIlJReHA5Sl5mEjZQ4pAntYirwwqS6Tw54xc3lJ-BooepCjQugbZU5EUz83JTEF589szc3l3-3hzX-9zUs08uzXLgfK7Q-u-Me4T434w7f_uD_PoUt0</recordid><startdate>20241019</startdate><enddate>20241019</enddate><creator>Zhu, Jing</creator><creator>Li, Ou</creator><creator>Chen, Minghui</creator><creator>Hu, Bingbing</creator><creator>Ma, EnHui</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3146-875X</orcidid><orcidid>https://orcid.org/0000-0001-6268-6982</orcidid></search><sort><creationdate>20241019</creationdate><title>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</title><author>Zhu, Jing ; Li, Ou ; Chen, Minghui ; Hu, Bingbing ; Ma, EnHui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_17531_ein_1946733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Li, Ou</creatorcontrib><creatorcontrib>Chen, Minghui</creatorcontrib><creatorcontrib>Hu, Bingbing</creatorcontrib><creatorcontrib>Ma, EnHui</creatorcontrib><collection>CrossRef</collection><jtitle>Eksploatacja i niezawodność</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jing</au><au>Li, Ou</au><au>Chen, Minghui</au><au>Hu, Bingbing</au><au>Ma, EnHui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application</atitle><jtitle>Eksploatacja i niezawodność</jtitle><date>2024-10-19</date><risdate>2024</risdate><issn>1507-2711</issn><eissn>2956-3860</eissn><abstract>Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.</abstract><doi>10.17531/ein/194673</doi><orcidid>https://orcid.org/0000-0003-3146-875X</orcidid><orcidid>https://orcid.org/0000-0001-6268-6982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1507-2711
ispartof Eksploatacja i niezawodność, 2024-10
issn 1507-2711
2956-3860
language eng
recordid cdi_crossref_primary_10_17531_ein_194673
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20bearing%20fault%20diagnosis%20method%20based%20on%20adaptive%20signal%20diagnosis%20network%20and%20its%20application&rft.jtitle=Eksploatacja%20i%20niezawodno%C5%9B%C4%87&rft.au=Zhu,%20Jing&rft.date=2024-10-19&rft.issn=1507-2711&rft.eissn=2956-3860&rft_id=info:doi/10.17531/ein/194673&rft_dat=%3Ccrossref%3E10_17531_ein_194673%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true