Rolling bearing fault diagnosis method based on adaptive signal diagnosis network and its application

Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Eksploatacja i niezawodność 2024-10
Hauptverfasser: Zhu, Jing, Li, Ou, Chen, Minghui, Hu, Bingbing, Ma, EnHui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the problems of fixed convolution kernel size and poor targeting of extracted features in the application of deep learning in fault diagnosis, this paper develops a fault diagnosis framework called adaptive signal diagnosis network (ASDN), in which the EEMD of multi-scale signal decomposition is improved in the adaptive preprocessing stage to adaptively capture the transient changes of signals. Meanwhile, SSA is improved to further extract fault trends and periodic components to optimize the signal representation. In the adaptive deep learning stage, an innovative temporal convolutional network (TCN) with a dynamic adjustment mechanism was developed to enable the neural network to adjust its convolutional kernel size according to different frequency components so as to accurately process signals of different frequencies. Validation on datasets from Case Western Reserve University and Xi'an Jiaotong University shows the superior performance of the proposed method, with diagnostic accuracies of 100% and 97.42% on these two public datasets, respectively.
ISSN:1507-2711
2956-3860
DOI:10.17531/ein/194673