Remaining Useful Life Prediction based on Multisource Domain Transfer and Unsupervised Alignment
Transfer learning (TL) enhances remaining useful life (RUL) predictions by addressing data scarcity and operational challenges. Nonetheless, when a significant disparity in degradation data distribution exists between source and target domains, single-source domain TL may lead to misleading or negat...
Gespeichert in:
Veröffentlicht in: | Eksploatacja i niezawodność 2024-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transfer learning (TL) enhances remaining useful life (RUL) predictions by addressing data scarcity and operational challenges. Nonetheless, when a significant disparity in degradation data distribution exists between source and target domains, single-source domain TL may lead to misleading or negative transfer. Multisource domain TL partially mitigates these issues but fails to account for substantial discrepancies in feature-label correlations, impairing RUL prediction accuracy. To cope with this problem, we propose a multisource domain unsupervised adaptive learning method powered by a temporal convolutional network. Using a multilinear conditioning strategy, we combine degradation data and subregion labels to construct input characteristics for the domain discriminator. Additionally, we design a feature extractor that produces label-related features invariant across domains, thereby enhancing prediction precision. We evaluate our method using the publicly available C-MAPSS degradation dataset, demonstrating its effectiveness through a case study and ablation experiments. |
---|---|
ISSN: | 1507-2711 2956-3860 |
DOI: | 10.17531/ein/194116 |