The maximum number of vertices of primitive regular graphs of orders 2, 3, 4 with exponent 2

In 2015, the results were obtained for the maximum number of vertices nk in regular graphs of a given order k with a diameter 2: n2 = 5, n3 = 10, n4 = 15. In this paper, we investigate a similar question about the largest number of vertices npk in a primitive regular graph of order k with exponent 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Prikladnaya Diskretnaya Matematika 2021-06 (52), p.97-104
Hauptverfasser: Abrosimov, M. B., Kostin, S. V., Los, I. V.
Format: Artikel
Sprache:eng ; rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2015, the results were obtained for the maximum number of vertices nk in regular graphs of a given order k with a diameter 2: n2 = 5, n3 = 10, n4 = 15. In this paper, we investigate a similar question about the largest number of vertices npk in a primitive regular graph of order k with exponent 2. All primitive regular graphs with exponent 2, except for the complete one, also have diameter d = 2. The following values were obtained for primitive regular graphs with exponent 2: np2 = 3, np3 = 4, np4 = 11.
ISSN:2071-0410
2311-2263
DOI:10.17223/20710410/52/6