BIO-PRINTING OF FEMUR MODEL: A BONE SUBSTITUTE FOR BIOMEDICAL RESEARCH

This paper deals with the development of a medical support model that can be used as a prototype to study the anatomy of the femur and for biomechanical research experimentation related to bone plates. CT scan data of the femur bone are converted into a 3D model using MIMICS software and imported in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materiali in tehnologije 2023-01, Vol.57 (3)
Hauptverfasser: Vasanthanathan, A., Kennedy, Senthil Maharaj
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the development of a medical support model that can be used as a prototype to study the anatomy of the femur and for biomechanical research experimentation related to bone plates. CT scan data of the femur bone are converted into a 3D model using MIMICS software and imported into a finite-element model for analysis. The materials selected for the fabrication of the femur model were PEEK and CF PEEK (infused with chopped carbon fibre). The femur bone model was analysed using ANSYS® WORKBENCH® 2021 R2 with different material properties. By conducting a subsequent FE analysis, the optimal material was finally arrived at. Using 3D-printing technology, the 3D model of the femur was fabricated by using a material spool with better properties suited for the femur bone. The FE results were compared with the experimental results of the fabricated femur model and the results of the CF PEEK bone model closely matched the properties of real human femur, and it can be used as a femur bone substitute for biomechanical investigations of bone plates instead of using a real femur.
ISSN:1580-2949
1580-3414
DOI:10.17222/mit.2023.831