Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule

The aim of this study was to define mechanisms involved in the luminal uptake of inorganic mercury in the kidney using isolated perfused straight (S2) segments of the proximal tubule. When mercuric conjugates of glutathione (GSH), cysteinylglycine. or cysteine (containing 203Hg2+) were perfused thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Nephrology 2000-03, Vol.11 (3), p.394-402
Hauptverfasser: CANNON, V. T, BARFUSS, D. W, ZALUPS, R. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to define mechanisms involved in the luminal uptake of inorganic mercury in the kidney using isolated perfused straight (S2) segments of the proximal tubule. When mercuric conjugates of glutathione (GSH), cysteinylglycine. or cysteine (containing 203Hg2+) were perfused through the lumen, the rates of luminal disappearance flux (JD) of inorganic mercury were approximately 39, 53, and 102 fmol/min per' min, respectively. Thus, the rates of luminal uptake of mercury are greater when the mercury is in the form of a mercuric conjugate of cysteine than in the form of a mercuric conjugate of cysteinylglycine or GSH. Addition of acivicin to the perfusate, to inhibit activity of the y-glutamyltransferase, caused significant reductions in the J,, for mercury in tubules perfused with mercuric conjugates of GSH. Addition of cilastatin, an inhibitor of dehydropeptidase- l (cysteinylglycinase) activity, caused significant reductions in the uptake of mercury in tubules perfused with mercuric conjugates of cysteinylglycine. These findings indicate that a significant amount of the luminal uptake of mercury, when mercuric conjugates of GSH are present in the lumen, is dependent on the activity of both y-glutamyltransferase and cysteinylglycinase. Finally, the JD for mercury in tubules perfused with mercuric conjugates of cysteine was reduced by approximately 50% when 3.0 mM L-lysine or 5.0 mM cycloleucine was added to the perfusate. It is concluded that these findings indicate that at least some of the luminal uptake of mercuric conjugates of cysteine occurs at the site of one or more amino acid transporters via a mechanism involving molecular homology.
ISSN:1046-6673
1533-3450
DOI:10.1681/ASN.V113394