Backward erosion piping in geotechnical infrastructure: a rate process perspective
Backward erosion piping (BEP) has been recognised as a major cause of failures in water-retaining structures. However, the fundamental mechanisms controlling the phenomenon are not well understood. This research applies the theory of rate processes to develop a constitutive relationship between ener...
Gespeichert in:
Veröffentlicht in: | Géotechnique 2024-05, p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Backward erosion piping (BEP) has been recognised as a major cause of failures in water-retaining structures. However, the fundamental mechanisms controlling the phenomenon are not well understood. This research applies the theory of rate processes to develop a constitutive relationship between energy density of the seepage flow and the erosion rate of soils during the evolution of BEP. The resulting equation is used to analyse four datasets of previously reported experimental observations. The mechanical parameters estimated through the proposed model fall into the ranges of values that were reported in the literature. To validate the proposed approach, the constitutive model was incorporated into a multiphase numerical framework to simulate evolution of BEP in embankment soil and compared with reported experimental observations. The numerical framework with the proposed constitutive model is shown to be capable of reproducing both the observed evolution of local hydraulic gradients and pipe progression in the structure. |
---|---|
ISSN: | 0016-8505 1751-7656 |
DOI: | 10.1680/jgeot.23.00259 |