Utilização do sucesso acadêmico para prever o abandono escolar de estudantes do ensino superior: um caso de estudo
Resumo O abandono escolar é um problema complexo que afeta a maioria dos programas de graduação pós-secundária, em todo o mundo. O curso de engenharia industrial do Instituto ISVOUGA, localizado em Santa Maria da Feira, Portugal, não é exceção. Este estudo usou um conjunto de dados contendo informaç...
Gespeichert in:
Veröffentlicht in: | Educação e pesquisa 2018-10, Vol.44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resumo O abandono escolar é um problema complexo que afeta a maioria dos programas de graduação pós-secundária, em todo o mundo. O curso de engenharia industrial do Instituto ISVOUGA, localizado em Santa Maria da Feira, Portugal, não é exceção. Este estudo usou um conjunto de dados contendo informações gerais dos estudantes e suas notas para as unidades curriculares já avaliadas. A partir deste conjunto de dados, foram selecionados dezessete preditores potenciais: cinco intrínsecos (gênero, estado civil, situação profissional, idade e regime de dedicação aos estudos – integral ou parcial) e doze extrínsecos (as notas em todas as doze unidades curriculares ministradas durante os dois primeiros semestres do curso). O objetivo principal desta investigação foi prever a probabilidade de um estudante abandonar o curso com base nos referidos preditores. Foi usada uma regressão logística binária para classificar os estudantes como tendo uma probabilidade alta ou baixa de não se reinscreverem no curso. Para validar se a metodologia utilizada é apropriada para o estudo em causa, a precisão obtida com o modelo de regressão logística foi comparada, por via de uma validação cruzada com cinco partições, com a precisão obtida pela utilização de três métodos muito utilizados em data mining: One R, K Nearest Neighbors e Naive Bayes. O modelo de regressão logística identificou quatro variáveis significativas na previsão do abandono escolar (as classificações nas unidades curriculares de ciência dos materiais, eletricidade, cálculo 1 e química). Os dois preditores mais influentes do abandono dos estudantes são não conseguir aprovação nas unidades curriculares menos exigentes: ciência dos materiais e eletricidade. Ao contrário do que seria de supor antes desta investigação, descobrimos que a não aprovação em unidades curriculares mais exigentes, como física ou estatística, não tem influência significativa no abandono escolar.
Abstract Student dropout is a complex problem that affects most post-secondary undergraduate programs, all over the world. The Industrial Engineering program of the ISVOUGA Institute, located in Sta. Maria da Feira, Portugal, is no exception. This research used a dataset containing students’ general information and the students’ marks for the already assessed courses. From this dataset, 17 potential predictors have been selected: five intrinsic predictors (gender, marital status, professional status, full/part time student, and age) and 12 extrinsic ones |
---|---|
ISSN: | 1517-9702 1678-4634 |
DOI: | 10.1590/s1678-4634201844180590 |