Feasibility of computational vision in the genetic improvement of sweet potato root production
ABSTRACT The improvement of sweet potato is a costly job due to the large number of characteristics to be analyzed for the selection of the best genotypes, making it necessary to adopt new technologies, such as the use of images, associated with the phenotyping process. The objective of this researc...
Gespeichert in:
Veröffentlicht in: | Horticultura brasileira 2022-12, Vol.40 (4), p.378-383 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT The improvement of sweet potato is a costly job due to the large number of characteristics to be analyzed for the selection of the best genotypes, making it necessary to adopt new technologies, such as the use of images, associated with the phenotyping process. The objective of this research was to develop a methodology for the phenotyping of the root production aiming genetic improvement of half-sib sweet potato progenies through computational analysis of images and to compare its performance to the traditional methodology of evaluation. Sixteen half-sib sweet potato families in a randomized block design with 4 replications were evaluated. At plant level, the weight per root and the total number of roots were evaluated. The images were acquired in a “studio” made of mdf with a digital camera model Canon PowerShotSX400 IS, under artificial lighting. The evaluations were carried out using the R software, where a second-degree polynomial regression model was fitted to predict the root weight (in grams) and the genetic values and expected gains were obtained. It was possible to predict the root weight at plant and plot level, obtaining high coefficients of determination between the predicted and observed weight. Computer vision allowed the prediction of root weight, maintaining the genotype ranking and consequently the similarity between the expected gains with the selection. Thus, the use of images is an efficient tool for sweet potato genetic improvement programs, assisting in the crop phenotyping process.
RESUMO O melhoramento da batata-doce é um trabalho oneroso em decorrência do grande número de características analisadas para a seleção dos melhores genótipos, fazendo-se necessária a adoção de novas tecnologias, como o uso de imagens, associadas ao processo de fenotipagem. Objetivou-se desenvolver uma metodologia para a fenotipagem da produção de raízes para o melhoramento genético de progênies de meios irmãos de batata-doce por meio da análise computacional de imagens e comparar seu desempenho com a metodologia tradicional de avaliação. Foram avaliadas 16 famílias de meios irmãos de batata-doce em delineamento de blocos casualizados com 4 repetições. Avaliou-se a nível de plantas o peso por raiz. As imagens foram adquiridas em um “estúdio” feito com mdf com uma câmera digital modelo Canon PowerShotSX400 IS, sob iluminação artificial. As avaliações foram realizadas no software R, onde para a predição do peso das raízes (em gramas) foi ajustado u |
---|---|
ISSN: | 0102-0536 1806-9991 |
DOI: | 10.1590/s0102-0536-20220405 |