Modelos hierárquicos bayesianos para estimação robusta e análise de dados censurados em melhoramento animal
Dados extremos influenciados por fatores não considerados no modelo estatístico, podem enviesar as estimativas dos parâmetros e valores genéticos. Além disso, diversas características de importância econômica não seguem uma distribuição normal ou apresentam dados censurados. O objetivo deste trabalh...
Gespeichert in:
Veröffentlicht in: | Revista brasileira de zootecnia 2009-07, Vol.38 (spe), p.72-80 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dados extremos influenciados por fatores não considerados no modelo estatístico, podem enviesar as estimativas dos parâmetros e valores genéticos. Além disso, diversas características de importância econômica não seguem uma distribuição normal ou apresentam dados censurados. O objetivo deste trabalho é descrever e ilustrar a aplicação de modelos hierárquicos bayesianos para a detecção e mitigação de dados extremos e para análise de dados censurados. Primeiro, é apresentada a especificação tradicional do modelo animal em estágios hierárquicos sob o enfoque bayesiano, para dados não censurados com distribuição Normal. A seguir, esse modelo é generalizado pela introdução de uma variável de ponderação independente, que permite a especificação de densidades residuais de caudas longas da família de distribuições Normal/independente. Finalmente, para contemplar a análise de dados censurados, o modelo básico é ampliado pela inclusão de uma variável com distribuição normal truncada no limite inferior do valor observado da característica no momento da avaliação, para aqueles animais que ainda não completaram sua vida reprodutiva no momento da avaliação.
Data strongly influenced by factors not accounted for by the statistical model can bias estimates of genetic parameters and values. Moreover, several traits of economic importance do not follow a normal distribution or have censored data. The objective of this study is to describe and illustrate the application of hierarchical Bayesian models for the detection and muting of outliers and for the analysis of censored data. First, the traditional specification of the animal model in hierarchical stages is presented under the Bayesian approach for normally distributed uncensored data. Then, this model is extended by introducing an independent weighting variable, which allows for the specification of thick tail residual densities from the Normal/independent distribution family. Finally, to cover censored data analysis, the basic model is extended by the inclusion of a variable with truncated normal distribution based on the lower limit in the observed value of the trait at the evaluation time, for those animals that have not yet completed their reproductive life at the evaluation time. |
---|---|
ISSN: | 1516-3598 1516-3598 |
DOI: | 10.1590/S1516-35982009001300009 |