Litter Decomposition of Two Pioneer Tree Species and Associated Soil Fauna in Areas Reclaimed after Surface Coal Mining in Southern Brazil

ABSTRACT Decomposition of leaf litter from pioneer tree species and development of associated soil meso- and macrofauna are fundamental for rehabilitation processes in reclaimed coal mining areas. The aim of our study was to evaluate decomposition of Schinus terebinthifolius and Senna multijuga to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Brasileira de Ciência do Solo 2016, Vol.40
Hauptverfasser: Frasson, Joice Martins de Freitas, Rosado, João Luis Osório, Elias, Samuel Galvão, Harter-Marques, Birgit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Decomposition of leaf litter from pioneer tree species and development of associated soil meso- and macrofauna are fundamental for rehabilitation processes in reclaimed coal mining areas. The aim of our study was to evaluate decomposition of Schinus terebinthifolius and Senna multijuga to answer three basic questions: (i) What type of leaf litter degrades faster in reclaimed coal min\ing areas? (ii) Is leaf decomposition correlated with the stage of regeneration and exposure time? and (iii) Does the type of leaf litter influence the diversity and abundance of the soil meso- and macrofauna species collected? Experiments were carried out in the state of Santa Catarina in three areas at different stages of regeneration. A total of 32 litter bags (16 per plant species) were used per study site, and they were divided into four blocks along a transect. Sampling was carried out at 15, 30, 60, and 120 days, when one litter bag per species/block was removed at random. We found no statistically significant difference between S. terebinthifolius and S. multijuga in regard to leaf-litter decomposition rate. However, the “area”, “litter bag exposure time” and “fauna richness” factors were significant. Therefore, shading and time of reclamation of areas contribute to an increase in decomposition rate and in development of soil meso- and macrofauna communities.
ISSN:0100-0683
1806-9657
0100-0683
DOI:10.1590/18069657rbcs20150444